Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9948025486402882
    Umfang: 1 online resource (0 p.)
    ISBN: 0-08-100126-6
    Anmerkung: Description based upon print version of record. , Front Cover -- Handbook of Materials Failure Analysis With Case Studies from the Oil and Gas Industry -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Failure analysis of oil and gas transmission pipelines -- 1. Introduction -- 2. Mechanical Damage -- 3. Longitudinal Seam-Weld Defects -- 3.1. Lap-Weld Defects -- 3.2. Lap-Weld Case Study -- 3.3. ERW Defects -- 3.4. Flash Weld Defects -- 3.5. Submerged-Arc Weld Defects -- 3.6. Submerged-Arc Weld Defect Case Study -- 3.7. Shielded Metal Arc Weld Defects -- 4. Corrosion -- 4.1. General Corrosion -- 4.2. Stress Corrosion Cracking -- 4.3. High-pH SCC Case Study -- 4.4. Near-Neutral pH SCC Case Study -- 4.5. Hydrogen-Stress Cracking -- 4.6. HSC Case Study -- 4.7. Grooving Corrosion -- 5. Fatigue -- 6. Conclusion -- References -- Chapter 2: Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries -- 1. Microscopy Techniques -- 1.1. Optical Microscopy -- 1.2. Scanning Electron Microscopy -- 1.3. Focused Ion Beam -- 2. Chemical and Radiographic Analysis -- 2.1. Energy Dispersive Spectroscopy -- 2.2. X-Ray Fluorescence -- 2.3. X-Ray Diffraction -- 2.4. Fourier Transform Infrared Spectrophotometry -- 2.5. X-Ray Photoelectron Spectroscopy -- 2.6. Radiography -- 2.7. Neutron Radiography -- 2.8. X-Ray Radiography -- 2.9. Gamma-Ray Radiography -- 2.10. Fluoroscopic Radiography -- 3. Conclusion and Future Outlook -- References -- Chapter 3: Methods for assessing defects leading to gas pipe failure -- 1. Introduction -- 2. Macroscopic and Microscopic Aspects of Pipe Failure -- 3. Brittle Fracture in a Pipe Emanating from a Crack -- 3.1. Cracks in a Pipe -- 3.2. Fracture Condition of a Cracked Pipe -- 3.3. Failure Assessment Diagram -- 3.4. Defect Assessment in a Brittle Cast Iron Pipe -- 4. Assessment of Gouges Using Notch Fracture Mechanics. , 4.1. Gouges in Pipes -- 4.2. Notch Fracture Mechanics -- 4.3. Notch Failure Assessment Diagram -- 4.4. Safety Factor Associated with Defect in Pipe Under Service Pressure -- 4.5. Two-Parameter Fracture Mechanics -- 4.5.1. Example of material failure master curve for a steel pipe -- 4.5.2. Loading path in plane Kap-Tef -- 5. Pipe Failure Emanating from Corrosion Defect -- 5.1. Burst Pressure Predicted by Plastic Collapse -- 5.2. Domain Failure Assessment Diagram -- 5.3. Application to Corrosion Defect in a Gas Pipe [25] -- 6. Pipe Failure Emanating from Dents -- 6.1. Dent: Origin and Description -- 6.2. Limit of Acceptability of Dent Depth -- 6.3. Methods to Estimate and Control Dent -- 6.4. Methods to Estimate and Control Dent+Gouge Defect -- 7. Conclusion -- References -- Chapter 4: Failure of glass fiber-reinforced epoxy pipes in oil fields -- 1. Introduction -- 2. In-Lab Studies -- 3. In-Service Degradation and Failure -- 4. Conclusion -- References -- Chapter 5: Failures and integrity of pipelines subjected to soil movements -- 1. Introduction -- 2. Recent Failures and Lessons Learned -- 3. Mitigation Measures During Operation -- 4. Prevention Measures at the Design Stage -- 5. Conclusion -- Acknowledgments -- References -- Chapter 6: Oil field drill pipes failure -- 1. Introduction -- 2. Case1: In-service Pitting -- 2.1. Experimental -- 2.1.1. Visual examination -- 2.1.2. SEM surface studies -- 2.1.3. Microstructure -- 2.1.4. Vicker's macrohardness -- 2.1.5. Chemical composition -- 2.2. Discussion -- 2.3. Conclusion and Recommendations -- 3. Case2: Surface Oxide Cracking -- 3.1. Experimental -- 3.1.1. Visual observation -- 3.1.2. Chemical analysis -- 3.1.3. Hardness measurements -- 3.1.4. Mechanical testing -- 3.1.5. Microstructural characterization -- 3.2. Discussion -- 3.3. Conclusion and Recommendations -- 4. Case3: Hardbanding Failure. , 4.1. Experimental -- 4.1.1. Visual observation -- 4.1.2. Chemical analysis -- 4.1.3. Hardness measurements -- 4.1.4. Mechanical testing -- 4.1.5. Microstructural characterization -- 4.1.6. Fractography -- 4.2. Discussion -- 4.3. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 7: Failure analysis and solution studies on drill pipe thread gluing at the exit side of horizontal directional dr ... -- 1. Introduction -- 2. Methodology and Model -- 2.1. Analysis of Construction Conditions -- 2.2. Material Tensioning and Make-Up and Break-Out Tests -- 2.2.1. Material tensioning tests -- 2.2.2. Make-up and break-out tests -- 2.2.3. Control equation of thread connection -- 2.2.4. Connecting thread 3D FEM -- 3. Results and Discussion -- 3.1. FEM Verification -- 3.2. Effects of Insufficient Make-Up Torque -- 3.3. Effect Analysis of Bending Moment -- 3.4. Improvement Measures -- 3.5. New Drill Pipe Thread Design -- 3.6. Comparison of Bending Strength -- 3.7. Comparison of Flexural Rigidity -- 3.8. Comparison of the Shoulder Sealing -- 4. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 8: Causes and conditions for reamer blade balling during hole enlargement while drilling -- 1. Introduction -- 2. Methodology and Model -- 2.1. Physical Model -- 2.2. Mathematical Model -- 2.2.1. Governing equations of continuous flow -- 2.2.2. Equation for cuttings removal -- 2.2.3. Discrete particle hard sphere model -- 2.3. Simulation Conditions -- 2.4. Numerical Model and Computation -- 2.5. Restrictive Conditions -- 3. Results and Discussion -- 3.1. Flow Pattern Discussion -- 3.2. Discussion of the Causes of Reamer Blade Balling -- 3.3. Measures to Reduce Balling -- 3.4. Optimizing the Reamer Blade Hydraulic Structure -- 3.5. The Influence of Nozzle Type and Angle -- 3.6. Parameter Optimization. , 4. Conclusion and Recommendations -- Momenclature -- Greek Symbols -- Acknowledgments -- References -- Chapter 9: Analysis of reamer failure based on vibration analysis of the rock breaking in horizontal directional drilling -- 1. Introduction -- 2. Methodology and Model -- 2.1. Reamer-Rock Contact with Mathematical Model -- 2.2. Drucker-Prager Rock Strength Criterion -- 2.3. Basic Assumptions -- 2.4. Petrophysical Parameters -- 2.5. Meshing and Boundary Conditions -- 3. Results and Discussion -- 3.1. Reamer Lateral, Axial, and Torsional Vibration Characteristics -- 3.2. Pullback Force on the Reamer Lateral Vibration -- 3.3. RPM on the Reamer Lateral Vibration -- 3.4. Selection of Reasonable Construction Parameters -- 3.5. Engineering Applications -- 4. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 10: Effect of artificial accelerated salt weathering on physical and mechanical behavior of sandstone samples from ... -- 1. Introduction -- 1.1. Geological Setting -- 1.2. Salt Weathering Effect -- 2. Experimental Program -- 2.1. Mineralogical Characterization -- 2.2. Experimental Procedures for Artificial Accelerated Salt Weathering Tests -- 2.3. Experimental Procedures for Physical Tests -- 2.4. Experimental Procedures for Mechanical Tests -- 3. Analysis of Results of the Experimental Program -- 3.1. Physical Behavior -- 3.2. Mechanical Behavior -- 4. Conclusion -- References -- Chapter 11: Stochastic failure analysis of defected oil and gas pipelines -- 1. Introduction -- 2. Research Significance -- 3. Time-Dependent Reliability Analysis -- 3.1. Background -- 3.2. Methods for Time-Dependent Reliability Analysis -- 3.2.1. First Passage Probability Method -- 3.2.2. Monte Carlo Simulation Method -- 3.3. Gamma Process Model -- 3.3.1. Maximum-Likelihood Estimation -- 3.3.2. Method of Moments. , 3.4. Comparison of Reliability Analysis Methods -- 4. Worked Example -- 5. Conclusion -- References -- Chapter 12: Determining the cause of a carbon steel joint failure in a gas flow pipeline production facility -- 1. History and Visual Examination -- 2. Laboratory Evaluation of the Failed ``T´´ Joint -- 3. Failure Analysis Summary -- 3.1. Physical Evaluation of the Cracked Site of the ``T´´ Joint -- 3.2. Chemical Composition Examination -- 3.2.1. FeCO3 corrosion predominates in natural gas pipes -- 3.3. The Metallographic Examination -- 3.4. Surface Examination Using SEM-EDS and Macrograph Images -- 4. Conclusion -- 5. Recommendations -- References -- Chapter 13: Experimental and numerical investigation of high-pressure water jetting effect toward NPS8 natural gas pipeli... -- 1. Introduction -- 2. Description of the Ruptures Pipe Incident -- 3. Methodology -- 4. Results and Discussion -- 4.1. Experimental Study -- 4.1.1. Properties of the impacted surface -- 4.1.2. Dispersion of pipe thinning rate -- 4.1.3. Pressure distribution for nozzle jetting source -- 4.1.4. The zero effect for nozzle jetting system at certain distance -- 5. CFD Simulation Study -- 5.1. Determination of the Pressure-Distance Curve for Various Nozzles Sizes -- 5.2. Jet Flow Pattern and Abrasion Behavior on the Pipe Test -- 6. Experimental and CFD Study on Safety Distance -- 6.1. Analysis on Pipe Distance with CFD and Experimental Result -- 7. Conclusion -- References -- Chapter 14: Graphitization in pressure vessels and piping -- 1. Introduction -- 2. Industrial Cases -- 2.1. Case1: Welded Joint in a Superheated Steam Tube -- 2.2. Case2: Longitudinal Welded Joint of Distillation Tower of a Catalytic Cracking Unit -- 2.3. Case3: Water Wall of Steam Boiler -- 2.4. Case4: Aligned Graphite in Steam Pipe -- 2.5. Case5: Outlet Superheater Steam Pipe -- 3. Discussion -- 4. Conclusion. , References. , English
    Weitere Ausg.: ISBN 0-08-100117-7
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    b3kat_BV042721373
    Umfang: XIX, 430 Seiten , Illustrationen
    ISBN: 9780081001172 , 0081001177
    Sprache: Englisch
    Fachgebiete: Technik , Physik
    RVK:
    RVK:
    Schlagwort(e): Material ; Fehleranalyse ; Bruchfestigkeit ; Ermüdung ; Stoffeigenschaft ; Finite-Elemente-Methode ; Fallstudiensammlung
    Mehr zum Autor: Aliofkhazraei, Mahmood
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edocfu_9960073733602883
    Umfang: 1 online resource (0 p.)
    ISBN: 0-08-100126-6
    Anmerkung: Description based upon print version of record. , Front Cover -- Handbook of Materials Failure Analysis With Case Studies from the Oil and Gas Industry -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Failure analysis of oil and gas transmission pipelines -- 1. Introduction -- 2. Mechanical Damage -- 3. Longitudinal Seam-Weld Defects -- 3.1. Lap-Weld Defects -- 3.2. Lap-Weld Case Study -- 3.3. ERW Defects -- 3.4. Flash Weld Defects -- 3.5. Submerged-Arc Weld Defects -- 3.6. Submerged-Arc Weld Defect Case Study -- 3.7. Shielded Metal Arc Weld Defects -- 4. Corrosion -- 4.1. General Corrosion -- 4.2. Stress Corrosion Cracking -- 4.3. High-pH SCC Case Study -- 4.4. Near-Neutral pH SCC Case Study -- 4.5. Hydrogen-Stress Cracking -- 4.6. HSC Case Study -- 4.7. Grooving Corrosion -- 5. Fatigue -- 6. Conclusion -- References -- Chapter 2: Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries -- 1. Microscopy Techniques -- 1.1. Optical Microscopy -- 1.2. Scanning Electron Microscopy -- 1.3. Focused Ion Beam -- 2. Chemical and Radiographic Analysis -- 2.1. Energy Dispersive Spectroscopy -- 2.2. X-Ray Fluorescence -- 2.3. X-Ray Diffraction -- 2.4. Fourier Transform Infrared Spectrophotometry -- 2.5. X-Ray Photoelectron Spectroscopy -- 2.6. Radiography -- 2.7. Neutron Radiography -- 2.8. X-Ray Radiography -- 2.9. Gamma-Ray Radiography -- 2.10. Fluoroscopic Radiography -- 3. Conclusion and Future Outlook -- References -- Chapter 3: Methods for assessing defects leading to gas pipe failure -- 1. Introduction -- 2. Macroscopic and Microscopic Aspects of Pipe Failure -- 3. Brittle Fracture in a Pipe Emanating from a Crack -- 3.1. Cracks in a Pipe -- 3.2. Fracture Condition of a Cracked Pipe -- 3.3. Failure Assessment Diagram -- 3.4. Defect Assessment in a Brittle Cast Iron Pipe -- 4. Assessment of Gouges Using Notch Fracture Mechanics. , 4.1. Gouges in Pipes -- 4.2. Notch Fracture Mechanics -- 4.3. Notch Failure Assessment Diagram -- 4.4. Safety Factor Associated with Defect in Pipe Under Service Pressure -- 4.5. Two-Parameter Fracture Mechanics -- 4.5.1. Example of material failure master curve for a steel pipe -- 4.5.2. Loading path in plane Kap-Tef -- 5. Pipe Failure Emanating from Corrosion Defect -- 5.1. Burst Pressure Predicted by Plastic Collapse -- 5.2. Domain Failure Assessment Diagram -- 5.3. Application to Corrosion Defect in a Gas Pipe [25] -- 6. Pipe Failure Emanating from Dents -- 6.1. Dent: Origin and Description -- 6.2. Limit of Acceptability of Dent Depth -- 6.3. Methods to Estimate and Control Dent -- 6.4. Methods to Estimate and Control Dent+Gouge Defect -- 7. Conclusion -- References -- Chapter 4: Failure of glass fiber-reinforced epoxy pipes in oil fields -- 1. Introduction -- 2. In-Lab Studies -- 3. In-Service Degradation and Failure -- 4. Conclusion -- References -- Chapter 5: Failures and integrity of pipelines subjected to soil movements -- 1. Introduction -- 2. Recent Failures and Lessons Learned -- 3. Mitigation Measures During Operation -- 4. Prevention Measures at the Design Stage -- 5. Conclusion -- Acknowledgments -- References -- Chapter 6: Oil field drill pipes failure -- 1. Introduction -- 2. Case1: In-service Pitting -- 2.1. Experimental -- 2.1.1. Visual examination -- 2.1.2. SEM surface studies -- 2.1.3. Microstructure -- 2.1.4. Vicker's macrohardness -- 2.1.5. Chemical composition -- 2.2. Discussion -- 2.3. Conclusion and Recommendations -- 3. Case2: Surface Oxide Cracking -- 3.1. Experimental -- 3.1.1. Visual observation -- 3.1.2. Chemical analysis -- 3.1.3. Hardness measurements -- 3.1.4. Mechanical testing -- 3.1.5. Microstructural characterization -- 3.2. Discussion -- 3.3. Conclusion and Recommendations -- 4. Case3: Hardbanding Failure. , 4.1. Experimental -- 4.1.1. Visual observation -- 4.1.2. Chemical analysis -- 4.1.3. Hardness measurements -- 4.1.4. Mechanical testing -- 4.1.5. Microstructural characterization -- 4.1.6. Fractography -- 4.2. Discussion -- 4.3. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 7: Failure analysis and solution studies on drill pipe thread gluing at the exit side of horizontal directional dr ... -- 1. Introduction -- 2. Methodology and Model -- 2.1. Analysis of Construction Conditions -- 2.2. Material Tensioning and Make-Up and Break-Out Tests -- 2.2.1. Material tensioning tests -- 2.2.2. Make-up and break-out tests -- 2.2.3. Control equation of thread connection -- 2.2.4. Connecting thread 3D FEM -- 3. Results and Discussion -- 3.1. FEM Verification -- 3.2. Effects of Insufficient Make-Up Torque -- 3.3. Effect Analysis of Bending Moment -- 3.4. Improvement Measures -- 3.5. New Drill Pipe Thread Design -- 3.6. Comparison of Bending Strength -- 3.7. Comparison of Flexural Rigidity -- 3.8. Comparison of the Shoulder Sealing -- 4. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 8: Causes and conditions for reamer blade balling during hole enlargement while drilling -- 1. Introduction -- 2. Methodology and Model -- 2.1. Physical Model -- 2.2. Mathematical Model -- 2.2.1. Governing equations of continuous flow -- 2.2.2. Equation for cuttings removal -- 2.2.3. Discrete particle hard sphere model -- 2.3. Simulation Conditions -- 2.4. Numerical Model and Computation -- 2.5. Restrictive Conditions -- 3. Results and Discussion -- 3.1. Flow Pattern Discussion -- 3.2. Discussion of the Causes of Reamer Blade Balling -- 3.3. Measures to Reduce Balling -- 3.4. Optimizing the Reamer Blade Hydraulic Structure -- 3.5. The Influence of Nozzle Type and Angle -- 3.6. Parameter Optimization. , 4. Conclusion and Recommendations -- Momenclature -- Greek Symbols -- Acknowledgments -- References -- Chapter 9: Analysis of reamer failure based on vibration analysis of the rock breaking in horizontal directional drilling -- 1. Introduction -- 2. Methodology and Model -- 2.1. Reamer-Rock Contact with Mathematical Model -- 2.2. Drucker-Prager Rock Strength Criterion -- 2.3. Basic Assumptions -- 2.4. Petrophysical Parameters -- 2.5. Meshing and Boundary Conditions -- 3. Results and Discussion -- 3.1. Reamer Lateral, Axial, and Torsional Vibration Characteristics -- 3.2. Pullback Force on the Reamer Lateral Vibration -- 3.3. RPM on the Reamer Lateral Vibration -- 3.4. Selection of Reasonable Construction Parameters -- 3.5. Engineering Applications -- 4. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 10: Effect of artificial accelerated salt weathering on physical and mechanical behavior of sandstone samples from ... -- 1. Introduction -- 1.1. Geological Setting -- 1.2. Salt Weathering Effect -- 2. Experimental Program -- 2.1. Mineralogical Characterization -- 2.2. Experimental Procedures for Artificial Accelerated Salt Weathering Tests -- 2.3. Experimental Procedures for Physical Tests -- 2.4. Experimental Procedures for Mechanical Tests -- 3. Analysis of Results of the Experimental Program -- 3.1. Physical Behavior -- 3.2. Mechanical Behavior -- 4. Conclusion -- References -- Chapter 11: Stochastic failure analysis of defected oil and gas pipelines -- 1. Introduction -- 2. Research Significance -- 3. Time-Dependent Reliability Analysis -- 3.1. Background -- 3.2. Methods for Time-Dependent Reliability Analysis -- 3.2.1. First Passage Probability Method -- 3.2.2. Monte Carlo Simulation Method -- 3.3. Gamma Process Model -- 3.3.1. Maximum-Likelihood Estimation -- 3.3.2. Method of Moments. , 3.4. Comparison of Reliability Analysis Methods -- 4. Worked Example -- 5. Conclusion -- References -- Chapter 12: Determining the cause of a carbon steel joint failure in a gas flow pipeline production facility -- 1. History and Visual Examination -- 2. Laboratory Evaluation of the Failed ``T´´ Joint -- 3. Failure Analysis Summary -- 3.1. Physical Evaluation of the Cracked Site of the ``T´´ Joint -- 3.2. Chemical Composition Examination -- 3.2.1. FeCO3 corrosion predominates in natural gas pipes -- 3.3. The Metallographic Examination -- 3.4. Surface Examination Using SEM-EDS and Macrograph Images -- 4. Conclusion -- 5. Recommendations -- References -- Chapter 13: Experimental and numerical investigation of high-pressure water jetting effect toward NPS8 natural gas pipeli... -- 1. Introduction -- 2. Description of the Ruptures Pipe Incident -- 3. Methodology -- 4. Results and Discussion -- 4.1. Experimental Study -- 4.1.1. Properties of the impacted surface -- 4.1.2. Dispersion of pipe thinning rate -- 4.1.3. Pressure distribution for nozzle jetting source -- 4.1.4. The zero effect for nozzle jetting system at certain distance -- 5. CFD Simulation Study -- 5.1. Determination of the Pressure-Distance Curve for Various Nozzles Sizes -- 5.2. Jet Flow Pattern and Abrasion Behavior on the Pipe Test -- 6. Experimental and CFD Study on Safety Distance -- 6.1. Analysis on Pipe Distance with CFD and Experimental Result -- 7. Conclusion -- References -- Chapter 14: Graphitization in pressure vessels and piping -- 1. Introduction -- 2. Industrial Cases -- 2.1. Case1: Welded Joint in a Superheated Steam Tube -- 2.2. Case2: Longitudinal Welded Joint of Distillation Tower of a Catalytic Cracking Unit -- 2.3. Case3: Water Wall of Steam Boiler -- 2.4. Case4: Aligned Graphite in Steam Pipe -- 2.5. Case5: Outlet Superheater Steam Pipe -- 3. Discussion -- 4. Conclusion. , References. , English
    Weitere Ausg.: ISBN 0-08-100117-7
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    edoccha_9960073733602883
    Umfang: 1 online resource (0 p.)
    ISBN: 0-08-100126-6
    Anmerkung: Description based upon print version of record. , Front Cover -- Handbook of Materials Failure Analysis With Case Studies from the Oil and Gas Industry -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Failure analysis of oil and gas transmission pipelines -- 1. Introduction -- 2. Mechanical Damage -- 3. Longitudinal Seam-Weld Defects -- 3.1. Lap-Weld Defects -- 3.2. Lap-Weld Case Study -- 3.3. ERW Defects -- 3.4. Flash Weld Defects -- 3.5. Submerged-Arc Weld Defects -- 3.6. Submerged-Arc Weld Defect Case Study -- 3.7. Shielded Metal Arc Weld Defects -- 4. Corrosion -- 4.1. General Corrosion -- 4.2. Stress Corrosion Cracking -- 4.3. High-pH SCC Case Study -- 4.4. Near-Neutral pH SCC Case Study -- 4.5. Hydrogen-Stress Cracking -- 4.6. HSC Case Study -- 4.7. Grooving Corrosion -- 5. Fatigue -- 6. Conclusion -- References -- Chapter 2: Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries -- 1. Microscopy Techniques -- 1.1. Optical Microscopy -- 1.2. Scanning Electron Microscopy -- 1.3. Focused Ion Beam -- 2. Chemical and Radiographic Analysis -- 2.1. Energy Dispersive Spectroscopy -- 2.2. X-Ray Fluorescence -- 2.3. X-Ray Diffraction -- 2.4. Fourier Transform Infrared Spectrophotometry -- 2.5. X-Ray Photoelectron Spectroscopy -- 2.6. Radiography -- 2.7. Neutron Radiography -- 2.8. X-Ray Radiography -- 2.9. Gamma-Ray Radiography -- 2.10. Fluoroscopic Radiography -- 3. Conclusion and Future Outlook -- References -- Chapter 3: Methods for assessing defects leading to gas pipe failure -- 1. Introduction -- 2. Macroscopic and Microscopic Aspects of Pipe Failure -- 3. Brittle Fracture in a Pipe Emanating from a Crack -- 3.1. Cracks in a Pipe -- 3.2. Fracture Condition of a Cracked Pipe -- 3.3. Failure Assessment Diagram -- 3.4. Defect Assessment in a Brittle Cast Iron Pipe -- 4. Assessment of Gouges Using Notch Fracture Mechanics. , 4.1. Gouges in Pipes -- 4.2. Notch Fracture Mechanics -- 4.3. Notch Failure Assessment Diagram -- 4.4. Safety Factor Associated with Defect in Pipe Under Service Pressure -- 4.5. Two-Parameter Fracture Mechanics -- 4.5.1. Example of material failure master curve for a steel pipe -- 4.5.2. Loading path in plane Kap-Tef -- 5. Pipe Failure Emanating from Corrosion Defect -- 5.1. Burst Pressure Predicted by Plastic Collapse -- 5.2. Domain Failure Assessment Diagram -- 5.3. Application to Corrosion Defect in a Gas Pipe [25] -- 6. Pipe Failure Emanating from Dents -- 6.1. Dent: Origin and Description -- 6.2. Limit of Acceptability of Dent Depth -- 6.3. Methods to Estimate and Control Dent -- 6.4. Methods to Estimate and Control Dent+Gouge Defect -- 7. Conclusion -- References -- Chapter 4: Failure of glass fiber-reinforced epoxy pipes in oil fields -- 1. Introduction -- 2. In-Lab Studies -- 3. In-Service Degradation and Failure -- 4. Conclusion -- References -- Chapter 5: Failures and integrity of pipelines subjected to soil movements -- 1. Introduction -- 2. Recent Failures and Lessons Learned -- 3. Mitigation Measures During Operation -- 4. Prevention Measures at the Design Stage -- 5. Conclusion -- Acknowledgments -- References -- Chapter 6: Oil field drill pipes failure -- 1. Introduction -- 2. Case1: In-service Pitting -- 2.1. Experimental -- 2.1.1. Visual examination -- 2.1.2. SEM surface studies -- 2.1.3. Microstructure -- 2.1.4. Vicker's macrohardness -- 2.1.5. Chemical composition -- 2.2. Discussion -- 2.3. Conclusion and Recommendations -- 3. Case2: Surface Oxide Cracking -- 3.1. Experimental -- 3.1.1. Visual observation -- 3.1.2. Chemical analysis -- 3.1.3. Hardness measurements -- 3.1.4. Mechanical testing -- 3.1.5. Microstructural characterization -- 3.2. Discussion -- 3.3. Conclusion and Recommendations -- 4. Case3: Hardbanding Failure. , 4.1. Experimental -- 4.1.1. Visual observation -- 4.1.2. Chemical analysis -- 4.1.3. Hardness measurements -- 4.1.4. Mechanical testing -- 4.1.5. Microstructural characterization -- 4.1.6. Fractography -- 4.2. Discussion -- 4.3. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 7: Failure analysis and solution studies on drill pipe thread gluing at the exit side of horizontal directional dr ... -- 1. Introduction -- 2. Methodology and Model -- 2.1. Analysis of Construction Conditions -- 2.2. Material Tensioning and Make-Up and Break-Out Tests -- 2.2.1. Material tensioning tests -- 2.2.2. Make-up and break-out tests -- 2.2.3. Control equation of thread connection -- 2.2.4. Connecting thread 3D FEM -- 3. Results and Discussion -- 3.1. FEM Verification -- 3.2. Effects of Insufficient Make-Up Torque -- 3.3. Effect Analysis of Bending Moment -- 3.4. Improvement Measures -- 3.5. New Drill Pipe Thread Design -- 3.6. Comparison of Bending Strength -- 3.7. Comparison of Flexural Rigidity -- 3.8. Comparison of the Shoulder Sealing -- 4. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 8: Causes and conditions for reamer blade balling during hole enlargement while drilling -- 1. Introduction -- 2. Methodology and Model -- 2.1. Physical Model -- 2.2. Mathematical Model -- 2.2.1. Governing equations of continuous flow -- 2.2.2. Equation for cuttings removal -- 2.2.3. Discrete particle hard sphere model -- 2.3. Simulation Conditions -- 2.4. Numerical Model and Computation -- 2.5. Restrictive Conditions -- 3. Results and Discussion -- 3.1. Flow Pattern Discussion -- 3.2. Discussion of the Causes of Reamer Blade Balling -- 3.3. Measures to Reduce Balling -- 3.4. Optimizing the Reamer Blade Hydraulic Structure -- 3.5. The Influence of Nozzle Type and Angle -- 3.6. Parameter Optimization. , 4. Conclusion and Recommendations -- Momenclature -- Greek Symbols -- Acknowledgments -- References -- Chapter 9: Analysis of reamer failure based on vibration analysis of the rock breaking in horizontal directional drilling -- 1. Introduction -- 2. Methodology and Model -- 2.1. Reamer-Rock Contact with Mathematical Model -- 2.2. Drucker-Prager Rock Strength Criterion -- 2.3. Basic Assumptions -- 2.4. Petrophysical Parameters -- 2.5. Meshing and Boundary Conditions -- 3. Results and Discussion -- 3.1. Reamer Lateral, Axial, and Torsional Vibration Characteristics -- 3.2. Pullback Force on the Reamer Lateral Vibration -- 3.3. RPM on the Reamer Lateral Vibration -- 3.4. Selection of Reasonable Construction Parameters -- 3.5. Engineering Applications -- 4. Conclusion and Recommendations -- Acknowledgments -- References -- Chapter 10: Effect of artificial accelerated salt weathering on physical and mechanical behavior of sandstone samples from ... -- 1. Introduction -- 1.1. Geological Setting -- 1.2. Salt Weathering Effect -- 2. Experimental Program -- 2.1. Mineralogical Characterization -- 2.2. Experimental Procedures for Artificial Accelerated Salt Weathering Tests -- 2.3. Experimental Procedures for Physical Tests -- 2.4. Experimental Procedures for Mechanical Tests -- 3. Analysis of Results of the Experimental Program -- 3.1. Physical Behavior -- 3.2. Mechanical Behavior -- 4. Conclusion -- References -- Chapter 11: Stochastic failure analysis of defected oil and gas pipelines -- 1. Introduction -- 2. Research Significance -- 3. Time-Dependent Reliability Analysis -- 3.1. Background -- 3.2. Methods for Time-Dependent Reliability Analysis -- 3.2.1. First Passage Probability Method -- 3.2.2. Monte Carlo Simulation Method -- 3.3. Gamma Process Model -- 3.3.1. Maximum-Likelihood Estimation -- 3.3.2. Method of Moments. , 3.4. Comparison of Reliability Analysis Methods -- 4. Worked Example -- 5. Conclusion -- References -- Chapter 12: Determining the cause of a carbon steel joint failure in a gas flow pipeline production facility -- 1. History and Visual Examination -- 2. Laboratory Evaluation of the Failed ``T´´ Joint -- 3. Failure Analysis Summary -- 3.1. Physical Evaluation of the Cracked Site of the ``T´´ Joint -- 3.2. Chemical Composition Examination -- 3.2.1. FeCO3 corrosion predominates in natural gas pipes -- 3.3. The Metallographic Examination -- 3.4. Surface Examination Using SEM-EDS and Macrograph Images -- 4. Conclusion -- 5. Recommendations -- References -- Chapter 13: Experimental and numerical investigation of high-pressure water jetting effect toward NPS8 natural gas pipeli... -- 1. Introduction -- 2. Description of the Ruptures Pipe Incident -- 3. Methodology -- 4. Results and Discussion -- 4.1. Experimental Study -- 4.1.1. Properties of the impacted surface -- 4.1.2. Dispersion of pipe thinning rate -- 4.1.3. Pressure distribution for nozzle jetting source -- 4.1.4. The zero effect for nozzle jetting system at certain distance -- 5. CFD Simulation Study -- 5.1. Determination of the Pressure-Distance Curve for Various Nozzles Sizes -- 5.2. Jet Flow Pattern and Abrasion Behavior on the Pipe Test -- 6. Experimental and CFD Study on Safety Distance -- 6.1. Analysis on Pipe Distance with CFD and Experimental Result -- 7. Conclusion -- References -- Chapter 14: Graphitization in pressure vessels and piping -- 1. Introduction -- 2. Industrial Cases -- 2.1. Case1: Welded Joint in a Superheated Steam Tube -- 2.2. Case2: Longitudinal Welded Joint of Distillation Tower of a Catalytic Cracking Unit -- 2.3. Case3: Water Wall of Steam Boiler -- 2.4. Case4: Aligned Graphite in Steam Pipe -- 2.5. Case5: Outlet Superheater Steam Pipe -- 3. Discussion -- 4. Conclusion. , References. , English
    Weitere Ausg.: ISBN 0-08-100117-7
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0081002777?
Meinten Sie 0801601177?
Meinten Sie 068001177?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz