Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Schlagwörter
  • 1
    UID:
    almafu_9960074027302883
    Umfang: 1 online resource (240 p.)
    Ausgabe: First edition.
    ISBN: 9780081001301 , 0081001304
    Serie: Woodhead Publishing series in biomedicine ; number 84
    Anmerkung: Description based upon print version of record. , Front Cover -- Bioengineering for Surgery -- Copyright -- CONTENTS -- ABOUT THE EDITORS -- ABOUT THE AUTHORS -- PREFACE -- ACKNOWLEDGMENTS -- 1 - Interface between Engineering and Medicine -- 1.1 INTRODUCTION TO SYSTEMS ENGINEERING -- 1.1.1 Medicine and Engineering: Bridging the Divide -- 1.1.2 Systems Engineering: A Common Platform -- 1.1.3 Functional Block Diagrams -- 1.1.4 Mechanical Systems Design -- 1.1.5 Electrical Systems Design -- 1.1.6 Controls/Software Systems Design -- 1.2 SUMMARY -- 2 - Clinical Translation and Commercialization -- 2.1 CLINICAL TRANSLATION -- 2.1.1 Where Do Good Ideas Come from? -- 2.1.2 Proof of Concept -- 2.1.3 Validation and Regulatory Affairs -- 2.1.4 Disclosure -- 2.1.4.1 Provisional Patent -- 2.1.4.2 Patent Cooperation Treaty -- 2.1.4.3 National Phase -- 2.2 COMMERCIALIZATION -- 2.2.1 Why Are You Doing This? -- 2.2.2 Market Analysis -- 2.2.3 Raising Money -- 2.2.4 Business Plan -- 2.2.4.1 Elevator Pitch -- 2.2.4.2 Short Pitch -- 2.2.4.3 Extended Pitch -- 2.2.4.4 Business Plan/Data Room -- 2.2.5 Valuation and Exit -- 2.3 CLOSING REMARKS -- 2.4 KEY POINTS OF THIS CHAPTER -- SUGGESTED READING -- 3 - Image Fusion and Visualization -- 3.1 REGISTRATION/FUSION -- 3.1.1 Introduction -- 3.1.1.1 Image Coordinate Systems -- 3.1.2 Definitions and the Roles of Image Registration and Fusion -- 3.1.3 Why Image Fusion? -- 3.2 REGISTRATION METHODS -- 3.2.1 Rigid Registration Techniques -- 3.2.1.1 Point to Point -- 3.2.2 Deformable Registration -- 3.2.3 Metrics -- 3.2.4 2D to 3D Registration: Optical to Volumetric -- 3.3 VISUALIZATION AND DISPLAY -- 3.3.1 Design and Human Factor Issues -- 3.3.2 Standard Methods and Software -- 3.3.2.1 Fundamental Requirements -- 3.3.2.2 3D Visualization -- 3.3.3 Augmented Reality/Display -- 3.3.3.1 Future Image Display Technologies -- 3.4 CASE STUDIES. , 3.4.1 Augmented Reality for Determination of Surgical No-Fly Zones -- 3.4.2 Display of Temperature during MRI-Guided Ablation -- 3.5 SUMMARY -- ACKNOWLEDGMENTS -- REFERENCES -- 4 - Image-Guided Procedures: Tools, Techniques, and Clinical Applications -- 4.1 BACKGROUND AND INTRODUCTION -- 4.2 COMMON COMPONENTS OF IMAGE GUIDANCE PLATFORMS -- 4.2.1 Medical Imaging Modalities -- 4.2.1.1 Computed Tomography -- 4.2.1.2 Magnetic Resonance Imaging -- 4.2.1.3 X-Ray Imaging -- 4.2.1.4 Ultrasound -- 4.2.1.5 Nuclear Imaging -- 4.2.2 Image Manipulation: Segmentation, Registration, Fusion -- 4.2.3 Surgical Localization and Tracking -- 4.3 ACCURACY CONSIDERATIONS: CLINICAL REQUIREMENTS VERSUS ENGINEERING PERFORMANCE -- 4.4 CLINICAL APPLICATIONS -- 4.4.1 Orthopedics -- 4.4.1.1 Pedicle Screw Instrumentation -- 4.4.1.2 Augmented Virtuality for Spine Needle Interventions -- 4.4.2 Abdominal Laparoscopic Applications -- 4.4.3 Neurosurgical Applications -- 4.4.3.1 Stereotactic Neurosurgery -- 4.4.3.2 Image-Based Planning for Epilepsy -- 4.4.3.3 Image-Guided Tumor Removal -- 4.4.4 Cardiac Applications -- 4.4.4.1 Transapical Aortic Valve Replacement -- 4.4.4.2 MV Repair -- 4.4.4.3 Left Atrial Ablation Guidance and Monitoring -- 4.5 LIMITATIONS, CONSTRAINTS, AND CHALLENGES -- 4.5.1 Design Constraints and Criteria -- 4.5.2 Clinical Implementation Limitations -- 4.5.3 Regulatory Constraints -- 4.6 SUMMARY AND FUTURE DIRECTIONS -- REFERENCES -- 5 - Surgical Robotic Tools -- 5.1 SYNOPSIS -- 5.2 DESIGN CONSIDERATIONS -- 5.3 A REVIEW OF THE TECHNOLOGY -- 5.3.1 Functional Paradigms -- 5.3.2 Target Procedures -- 5.3.3 A Brief Survey -- 5.4 OUR EXPERIENCE -- 5.4.1 Miniature Snake-like Tool Prototype -- 5.4.2 Miniature Dual-Arm Tool Prototype -- 5.4.3 MR-Compatible Bone Biopsy Robot -- 5.5 FUTURE DIRECTIONS -- REFERENCES -- 6 - Simulation in Minimal Access Surgery -- 6.1 INTRODUCTION. , 6.2 VIDEO-BOX TRAINING -- 6.3 VIRTUAL REALITY TRAINING -- 6.4 VALIDATED ASSESSMENTS OF SIMULATED TRAINING -- 6.5 MOTION AND FORCE ANALYSIS IN MINIMAL ACCESS SIMULATION -- 6.6 CONCLUSION -- REFERENCES -- 7 - A Simulation Hospital as a Model of Immersive-Based Learning: The Concept and Challenges -- 7.1 INTRODUCTION -- 7.2 THE CONCEPT -- 7.3 DEFINITION -- 7.4 PHYSICAL STRUCTURE OF THE SIMULATION HOSPITAL -- 7.4.1 Surgical Simulation -- 7.4.1.1 Forms of Surgical Simulation -- 7.4.1.2 A Model of a Surgical Simulation Unit -- 7.4.2 Other Clinical Simulation Departments -- 7.4.3 Nonclinical Simulation Departments -- 7.4.4 Educational Area -- 7.4.4.1 Conference Rooms -- 7.4.4.2 Debriefing Rooms -- 7.4.4.3 Observation Areas -- 7.4.5 Supportive Services Area -- 7.4.5.1 Storerooms -- 7.4.5.2 Changing Rooms -- 7.4.5.3 Standardized Patients' Prep Area -- 7.4.5.4 Audiovisual Rooms and Servers -- 7.4 PHYSICAL STRUCTURE OF THE SIMULATION -- 7.5 CATEGORIES OF HEALTHCARE GIVER TRAINEES -- 7.5.1 Physicians -- 7.5.2 Nursing Staff -- 7.5.3 Pharmacists -- 7.5.4 Administrative Staff -- 7.5.5 Hospital Security, Facility Management, and Safety Staff -- 7.5.6 Food Handling Staff -- 7.5.7 Housekeeping Staff -- 7.5.8 Allied Healthcare Givers -- 7.6 SPECIALIZED SIMULATION TRAINING PROGRAMS -- 7.6.1 Multidisciplinary SBE -- 7.6.2 Longitudinal SBE -- 7.6.3 Multidepartment SBE -- 7.7 CHALLENGES IN ESTABLISHING A SIMULATION HOSPITAL -- 7.7.1 Engineering Standards -- 7.7.2 Space -- 7.7.3 Cost -- 7.8 CONCLUSION -- REFERENCES -- 8 - Virtual Simulation: Abdomen -- 8.1 INTRODUCTION -- 8.2 TYPES OF SIMULATION AND ASSESSMENT METRICS -- 8.3 ABDOMINAL SIMULATION-PHYSICAL PHANTOMS AND BOX TRAINERS -- 8.3.1 The Creation of Physical Phantoms -- 8.3.2 Efficacy of Physical Phantoms/Box Trainers -- 8.4 ABDOMINAL SIMULATION-VR -- 8.4.1 Efficacy of VR Trainers -- 8.5 SIMULATED OPERATING ROOM. , 8.6 FUTURE OF ABDOMINAL SIMULATION -- REFERENCES -- 9 - Application of 3D Printing in Medical Simulation and Education -- 9.1 INTRODUCTION -- 9.2 THREE-DIMENSIONAL PRINTING -- 9.3 MODELING IN CRANIOFACIAL SURGERY -- 9.3.1 Normative Pediatric Skull Model Library -- 9.3.2 Application of Prefabricated Templates in Craniofacial Remodeling -- 9.4 SILICONE MODELING -- 9.4.1 Urology Models -- 9.4.2 Neurosurgery Models -- 9.4.3 Plastics Models -- 9.5 CONCLUSIONS -- REFERENCES -- 10 - Simulation Surgical Models: Surgeon Perspectives -- 10.1 INTRODUCTION -- 10.2 EVOLUTION OF MODERN SURGICAL SIMULATION -- 10.3 THEORETICAL CONSTRUCTS FOR THE BASIS OF SIMULATION -- 10.4 TYPES OF SURGICAL SIMULATIONS -- 10.5 CONSIDERATIONS FOR SURGICAL SIMULATION -- 10.6 ASSESSMENT IN SIMULATION TRAINING -- 10.7 CONCLUSION -- REFERENCES -- 11 - Bioengineering and Regenerative Medicine in Surgery -- 11.1 INTRODUCTION -- 11.2 CELL THERAPIES -- 11.3 BIOMATERIAL DESIGN AND SELECTION -- 11.3.1 Design Constraints for Biomaterials -- 11.4 TRANSLATION TO THE OPERATING ROOM: REGENERATIVE MEDICINE IN SURGICAL THERAPIES -- 11.4.1 Skin -- 11.4.2 Bone -- 11.4.3 Gastrointestinal and Genitourinary Tract -- 11.4.4 Regenerative Medicine in Minimally Invasive Surgical Technology -- 11.5 CONCLUSIONS -- REFERENCES -- Concluding Remarks -- INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- J -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- X -- Z -- Back Cover. , English
    Weitere Ausg.: ISBN 9780081001233
    Weitere Ausg.: ISBN 0081001231
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0001001213?
Meinten Sie 0081000251?
Meinten Sie 0081001037?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz