UID:
almafu_9961089703402883
Umfang:
1 online resource (390 pages) :
,
illustrations.
ISBN:
9780081017517
,
0081017510
,
9780081017500
,
0081017502
Serie:
Woodhead Publishing Series in Biomaterials
Anmerkung:
Includes index.
,
Front Cover -- Engineering of Biomaterials for Drug Delivery Systems -- Copyright Page -- Contents -- List of contributors -- 1 PEGylated "stealth" nanoparticles and liposomes -- 1.1 Introduction of drug delivery -- 1.2 Design of nanoparticles for drug delivery -- 1.2.1 Size effect -- 1.2.2 Shape effect -- 1.2.3 Stiffness effect -- 1.2.4 Surface properties -- 1.3 PEGylated liposomes -- 1.4 Experimental observations -- 1.4.1 Protein absorption -- 1.4.2 Macrophage uptake and blood circulation time -- 1.5 Computational studies -- 1.5.1 Protein absorption -- 1.5.2 Endocytosis -- 1.6 Beyond liposomes -- 1.7 Summary -- Acknowledgments -- References -- 2 The case for protein PEGylation -- 2.1 Introduction -- 2.2 Other strategies to achieve extended PK properties -- 2.3 PEGylation continues to be clinically proven -- 2.4 The simplicity of protein PEGylation -- 2.5 Concerns about PEGylation -- 2.6 Conclusions -- References -- 3 PEGylation and anti-PEG antibodies -- 3.1 Introduction -- 3.2 PEG immunogenicity in animal models -- 3.2.1 Anti-PEG response to PEGylated proteins -- 3.2.2 Anti-PEG response to PEGylated nanocarriers -- 3.2.3 Mechanism of the ABC phenomenon -- 3.2.4 Correlation between complement activation and the ABC phenomenon -- 3.2.5 Factors affecting the ABC phenomenon -- 3.3 PEG immunogenicity in humans -- 3.3.1 Preexisting anti-PEG antibodies in normal donors -- 3.3.2 Clinical implications of anti-PEG antibodies on the efficacy of PEGylated therapeutics -- 3.3.3 Nonantibody-mediated hypersensitivity reactions -- 3.4 Strategies to avert anti-PEG antibody responses -- 3.4.1 Modification of the PEG moiety -- 3.4.2 Use of alternative polymers instead of PEGylation -- 3.4.3 Polypeptide fusion -- 3.5 Conclusions -- Acknowledgments -- Abbreviations -- References -- 4 Polyzwitterions -- 4.1 Introduction -- 4.1.1 Zwitterionic polymers.
,
4.1.1.1 Sulfobetaine polymers -- 4.1.1.2 Carbobetaine polymers -- 4.1.1.3 Phosphobetaine polymers -- 4.2 Biocompatibility studies of zwitterionic polymers -- 4.3 Approaches for drug delivery incorporating zwitterionic polymers -- 4.4 Future prospects -- References -- 5 Polyglycerols -- 5.1 Introduction -- 5.2 Synthetic strategies -- 5.2.1 Linear polyglycerols -- 5.2.2 Hyperbranched polyglycerols -- 5.2.2.1 Ring-opening multibranching polymerization -- Cationic ring-opening multibranching polymerizations -- Anionic ring-opening multibranching polymerizations -- 5.2.3 Perfect dendritic polyglycerols -- 5.2.3.1 Divergent synthetic approaches -- 5.2.3.2 Convergent synthetic approach -- 5.3 Characteristic features of polyglycerols which make them appropriate for drug formulations -- 5.3.1 Effect on drug solubility -- 5.3.2 Effect on drug stability -- 5.3.2.1 Chemically conjugated drugs -- 5.3.2.2 Physically loaded drugs -- 5.3.3 Effect on drug bioavailability -- 5.3.4 Surface modification in order to targeting ability -- 5.3.4.1 FA-targeted polyglycerols -- 5.3.4.2 LA-targeted polyglycerols -- 5.3.4.3 Peptide-targeted polyglycerols -- 5.3.4.4 Lipophilic cations-targeted polyglycerols -- 5.4 Supramolecular drug delivery systems -- 5.4.1 pH-responsive systems -- 5.4.2 Thermoresponsive systems -- 5.4.3 Light responsive systems -- 5.5 Niosomes -- 5.6 Emulsions -- 5.7 Gastric retentive systems -- 5.8 Current advances in cancer therapy -- 5.8.1 Treatment -- 5.8.2 Bioimaging -- 5.9 Current advances in gene therapy -- 5.10 Current advances in pathogen interactions -- 5.11 Promises and challenges in nanomedicine -- 5.12 Conclusions -- References -- 6 Poly(oxazolines) -- 6.1 Introduction -- 6.2 History of poly(oxazolines) -- 6.3 Chemistry -- 6.4 Characterization -- 6.5 Comparison of polyoxazolines and polyethylene glycols.
,
6.6 Polyoxazoline conjugates of peptides and proteins -- 6.7 Polyoxazoline conjugates of small molecules -- 6.8 Safety and toxicology of polyoxazoline polymers -- 6.9 Conclusion -- Acknowledgments -- References -- Further reading -- 7 Poly(amino acids) -- 7.1 Introduction to poly(amino acid)s -- 7.2 Poly(amino acid) synthesis -- 7.3 Methods of NCA synthesis -- 7.3.1 The Leuchs method for NCA synthesis -- 7.3.2 The Fuchs-Farthing method for NCA synthesis -- 7.3.3 Purification of NCA monomers -- 7.4 Methods of NCA polymerization to yield poly(amino acid)s -- 7.4.1 The normal amine mechanism of poly(amino acid) synthesis -- 7.4.2 The activated monomer mechanism of poly(amino acid) synthesis -- 7.4.3 Primary amine-hydrochlorides as substitutes for primary amines for NCA ROP -- 7.4.4 Hexamethyldisilazane-initiated NCA ROP -- 7.4.5 Transition metal complex-catalyzed NCA ROP -- 7.4.6 NCA ROP from functional initiators -- 7.4.7 Commercial exploitation of NCA ROP: glatiramer acetate -- 7.5 Polymer self-assembly -- 7.5.1 Poly(amino acid)-based micelles and vesicles -- 7.5.2 Poly(amino acid)-based polymer hydrogels -- 7.6 Polymer functionalization -- 7.6.1 Poly(amino acid)-based glycopeptides -- 7.6.2 PEGylation and other synthetic polymers -- 7.6.3 Star-shaped hybrid materials and complex architectures -- 7.7 Peptoids -- 7.8 Concluding remarks -- References -- 8 Polyacrylamide and related polymers -- 8.1 Introduction -- 8.2 Poly[N-(2-hydroxypropyl)methacrylamide] -- 8.3 Poly(N-isopropylacrylamide) -- 8.4 Acrylamide hydrogel based drug delivery -- 8.5 Poly(acrylamide)s based nanoparticles for drug delivery -- 8.6 Conclusions -- References -- 9 Poly(vinylpyrrolidone) -- 9.1 Introduction -- 9.2 Synthesis of poly(vinylpyrrolidones) -- 9.3 Polymer characteristics with special emphasis on drug delivery -- 9.3.1 General properties of PVP.
,
9.3.2 Physical properties of PVP -- 9.3.2.1 Molecular weight -- 9.3.2.2 Viscosity -- 9.3.3 Chemical properties -- 9.3.3.1 Stability -- 9.3.3.2 Solubility -- 9.3.3.3 Compatibility -- 9.3.4 Biological properties -- 9.3.4.1 Complex formation -- 9.3.4.2 Film-forming property -- 9.3.4.3 Protective-colloid action -- 9.4 Merits of poly(vinylpyrrolidones) -- 9.4.1 Nontoxic -- 9.4.2 Solubility enhancement -- 9.4.3 Stabilizer -- 9.4.4 Intracytoplasmic sperm injection -- 9.4.5 Ophthalmic suitability -- 9.4.6 Molding agent -- 9.4.7 Application in cosmetics -- 9.4.8 Binder -- 9.5 Disadvantages of poly(vinylpyrrolidones) -- 9.5.1 Allergic reaction -- 9.5.2 Intracytoplasmatic injection of sperm -- 9.5.3 Nonbiodegradability -- 9.5.4 Hygroscopicity -- 9.5.5 Particle growth inhibitor -- 9.6 Application of PVP in drug delivery -- 9.7 Challenges of poly(vinylpyrrolidones) for applications in pharmaceutical formulations -- 9.8 Patents based on poly(vinylpyrrolidones) for pharmaceutical applications -- 9.8.1 Preparation of PVP-iodine (US 4200710 A) -- 9.8.2 Material to form a hydrogel (US 20150224222 A1) -- 9.8.3 Fabrication of soft plastic contact lens blank (US3700761A) -- 9.8.4 Antithrombogenic PVP-heparin polymer (US4239664A) -- 9.8.5 Cross-linked PVP-I2 foam product (US5672634A) -- 9.8.6 Pharmaceutical tablet with PVP having an enhanced drug dissolution rate (US5262171A) -- 9.8.7 Enhanced SPF UV-sunscreen/tricontanyl PVP photoprotecting (sprayable) formulations (US6436376B1) -- 9.9 Research overview and future recommendations -- 9.10 Conclusions -- References -- 10 Sugar-based systems -- 10.1 Introduction -- 10.2 Polyethylene glycol: merits and limitations -- 10.3 Sugar-based systems -- 10.3.1 Advantages of sugar-based systems -- 10.3.2 Synthesis of sugar-based polymers -- 10.3.3 Sugar-macromolecule conjugates for targeted drug delivery.
,
10.4 Trehalose-based systems -- 10.4.1 Trehalose for protection of proteins -- 10.4.2 Trehalose for cryopreservation of mammalian cells -- 10.5 Trehalose glycopolymers -- 10.5.1 Trehalose glycopolymers for protein stabilization -- 10.5.2 Trehalose hydrogels for enzyme stabilization -- 10.5.3 Trehalose glycopolymers for stabilization and delivery of nucleic acids -- 10.5.4 Trehalose glyconanoparticles for drug delivery -- 10.5.5 Trehalose glycopolymers for theranostics -- 10.6 Conclusions -- References -- 11 Polypeptides: PASylation and XTEN -- 11.1 Introduction -- 11.2 PASylation -- 11.2.1 Design of PAS sequences -- 11.2.2 Design of Gene cassettes -- 11.2.3 PAS fusion proteins -- 11.2.4 Physicochemical and biological properties -- 11.2.5 Applications -- 11.2.5.1 Half-life extension of proteins and peptides -- 11.2.5.2 PAS fusion proteins for in vivo imaging -- 11.3 XTEN -- 11.3.1 Design of XTEN protein polymers -- 11.3.2 Properties -- 11.3.2.1 Physiochemical properties -- 11.3.2.2 Biological properties -- 11.3.3 Applications -- 11.3.3.1 Half-life extension of proteins and peptides -- 11.3.3.2 XTEN fusion proteins for in vivo imaging -- 11.4 Conclusions and future directions -- Acknowledgments -- References -- 12 Drug delivery systems based on nonimmunogenic biopolymers -- 12.1 Introduction -- 12.2 An overview of DDS -- 12.3 Biopolymers used as drug carriers -- 12.3.1 Hydrolytically degradable biopolymers -- 12.3.1.1 Poly(α-ester)s -- 12.3.1.1.1 Poly(glycolic acid) -- 12.3.1.1.2 Poly(lactic acid) -- 12.3.1.1.3 Poly(lactic-co-glycolic acid) -- 12.3.1.1.4 Polyhydroxyalkanoates -- 12.3.1.1.5 Poly(ε-caprolactone) -- 12.3.2 Enzymatically degradable biopolymers -- 12.3.2.1 Synthetic polyethers -- 12.3.2.2 Proteins and poly(amino acids) -- 12.3.2.2.1 Collagen -- 12.3.2.2.2 Elastin and elastin-like polypeptides -- 12.3.2.2.3 Keratin -- 12.3.2.2.4 Albumin.
,
12.3.2.2.5 Fibrin.
Sprache:
Englisch
Schlagwort(e):
Aufsatzsammlung
;
Aufsatzsammlung
;
Aufsatzsammlung
;
Aufsatzsammlung
URL:
Volltext
(URL des Erstveröffentlichers)
URL:
Volltext
(URL des Erstveröffentlichers)
URL:
Volltext
(URL des Erstveröffentlichers)
URL:
Volltext
(URL des Erstveröffentlichers)
Bookmarklink