Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francsico ; Singapore ; Sydney ; Tokyo :Elsevier,
    UID:
    almafu_BV042300236
    Umfang: 1 Online-Ressource (xii, 263 Seiten).
    Ausgabe: First edition
    ISBN: 978-0-12-416745-2 , 0-12-416745-4
    Serie: Elsevier insights
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-416743-8
    Sprache: Englisch
    Schlagwort(e): Algorithmus ; Optimierung ; Natur
    Mehr zum Autor: Yang, Xin-She 1965-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    London, [England] ; : Elsevier,
    UID:
    almafu_9958090118202883
    Umfang: 1 online resource (277 p.)
    Ausgabe: First edition.
    ISBN: 9780124167452 , 0124167454
    Inhalt: Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, paramete
    Anmerkung: Description based upon print version of record. , Half Title; Title Page; Copyright; Contents; Preface; 1 Introduction to Algorithms; 1.1 What is an Algorithm?; 1.2 Newton's Method; 1.3 Optimization; 1.3.1 Gradient-Based Algorithms; 1.3.2 Hill Climbing with Random Restart; 1.4 Search for Optimality; 1.5 No-Free-Lunch Theorems; 1.5.1 NFL Theorems; 1.5.2 Choice of Algorithms; 1.6 Nature-Inspired Metaheuristics; 1.7 A Brief History of Metaheuristics; References; 2 Analysis of Algorithms; 2.1 Introduction; 2.2 Analysis of Optimization Algorithms; 2.2.1 Algorithm as an Iterative Process; 2.2.2 An Ideal Algorithm?; 2.2.3 A Self-Organization System , 2.2.4 Exploration and Exploitation2.2.5 Evolutionary Operators; 2.3 Nature-Inspired Algorithms; 2.3.1 Simulated Annealing; 2.3.2 Genetic Algorithms; 2.3.3 Differential Evolution; 2.3.4 Ant and Bee Algorithms; 2.3.5 Particle Swarm Optimization; 2.3.6 The Firefly Algorithm; 2.3.7 Cuckoo Search; 2.3.8 The Bat Algorithm; 2.3.9 Harmony Search; 2.3.10 The Flower Algorithm; 2.3.11 Other Algorithms; 2.4 Parameter Tuning and Parameter Control; 2.4.1 Parameter Tuning; 2.4.2 Hyperoptimization; 2.4.3 Multiobjective View; 2.4.4 Parameter Control; 2.5 Discussions; 2.6 Summary; References , 3 Random Walks and Optimization3.1 Random Variables; 3.2 Isotropic Random Walks; 3.3 Lévy Distribution and Lévy Flights; 3.4 Optimization as Markov Chains; 3.4.1 Markov Chain; 3.4.2 Optimization as a Markov Chain; 3.5 Step Sizes and Search Efficiency; 3.5.1 Step Sizes, Stopping Criteria, and Efficiency; 3.5.2 Why Lévy Flights are More Efficient; 3.6 Modality and Intermittent Search Strategy; 3.7 Importance of Randomization; 3.7.1 Ways to Carry Out Random Walks; 3.7.2 Importance of Initialization; 3.7.3 Importance Sampling; 3.7.4 Low-Discrepancy Sequences; 3.8 Eagle Strategy , 3.8.1 Basic Ideas of Eagle Strategy3.8.2 Why Eagle Strategy is So Efficient; References; 4 Simulated Annealing; 4.1 Annealing and Boltzmann Distribution; 4.2 Parameters; 4.3 SA Algorithm; 4.4 Unconstrained Optimization; 4.5 Basic Convergence Properties; 4.6 SA Behavior in Practice; 4.7 Stochastic Tunneling; References; 5 Genetic Algorithms; 5.1 Introduction; 5.2 Genetic Algorithms; 5.3 Role of Genetic Operators; 5.4 Choice of Parameters; 5.5 GA Variants; 5.6 Schema Theorem; 5.7 Convergence Analysis; References; 6 Differential Evolution; 6.1 Introduction; 6.2 Differential Evolution , 6.3 Variants6.4 Choice of Parameters; 6.5 Convergence Analysis; 6.6 Implementation; References; 7 Particle Swarm Optimization; 7.1 Swarm Intelligence; 7.2 PSO Algorithm; 7.3 Accelerated PSO; 7.4 Implementation; 7.5 Convergence Analysis; 7.5.1 Dynamical System; 7.5.2 Markov Chain Approach; 7.6 Binary PSO; References; 8 Firefly Algorithms; 8.1 The Firefly Algorithm; 8.1.1 Firefly Behavior; 8.1.2 Standard Firefly Algorithm; 8.1.3 Variations of Light Intensity and Attractiveness; 8.1.4 Controlling Randomization; 8.2 Algorithm Analysis; 8.2.1 Scalings and Limiting Cases , 8.2.2 Attraction and Diffusion , English
    Weitere Ausg.: ISBN 9780124167438
    Weitere Ausg.: ISBN 0124167438
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0124166474?
Meinten Sie 0124167055?
Meinten Sie 0124104754?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz