Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam [u.a.] :Academic Press, an imprint of Elsevier,
    UID:
    almafu_BV042300121
    Umfang: 1 Online-Ressource.
    Ausgabe: Second edition
    ISBN: 978-0-12-800290-2 , 0-12-800290-5 , 978-0-12-800042-7
    Anmerkung: "In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"--. - Includes bibliographical references and index
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-800042-7
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Wahrscheinlichkeitstheorie ; Maßtheorie ; Einführung ; Einführung ; Einführung ; Einführung
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Oxford :Academic Press,
    UID:
    almafu_9960074159402883
    Umfang: 1 online resource (557 pages)
    Ausgabe: 2nd ed.
    ISBN: 0-12-800290-5
    Inhalt: "In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"--
    Anmerkung: Bibliographic Level Mode of Issuance: Monograph , Machine generated contents note: Preface 1. Certain Classes of Sets, Measurability, Pointwise Approximation 2. Definition and Construction of a Measure and Its Basic Properties 3. Some Modes of Convergence of a Sequence of Random Variables and Their Relationships 4. The Integral of a Random Variable and Its Basic Properties 5. Standard Convergence Theorems, The Fubini Theorem 6. Standard Moment and Probability Inequalities, Convergence in the r-th Mean and Its Implications 7. The Hahn-Jordan Decomposition Theorem, The Lebesgue Decomposition Theorem, and The Radon-Nikcodym Theorem 8. Distribution Functions and Their Basic Properties, Helly-Bray Type Results 9. Conditional Expectation and Conditional Probability, and Related Properties and Results 10. Independence 11. Topics from the Theory of Characteristic Functions 12. The Central Limit Problem: The Centered Case 13. The Central Limit Problem: The Noncentered Case 14. Topics from Sequences of Independent Random Variables 15. Topics from Ergodic Theory. , English
    Weitere Ausg.: ISBN 0-12-800042-2
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0023002905?
Meinten Sie 0128000805?
Meinten Sie 0128001909?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz