UID:
almahu_9949982678402882
Umfang:
1 online resource (378 pages) :
,
illustrations
ISBN:
9780128011812
,
0128011815
,
9780128010099
,
0128010096
Anmerkung:
Bibliographic Level Mode of Issuance: Monograph
,
Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Chapter 1 - Peptide Fragmentation/Deletion Side Reactions -- 1.1 - Acidolysis of peptides containing N-Ac-N-alkyl-Xaa motif -- 1.2 - des-Ser/Thr impurities induced by O-acyl isodipeptide Boc-Ser/Thr(Fmoc-Xaa)-OH as building block for peptide synthesis -- 1.3 - Acidolysis of -N-acyl-N-alkyl-Aib-Xaa- bond -- 1.4 - Acidolysis of -Asp-Pro- bond -- 1.5 - Autodegradation of peptide N-terminal H-His-Pro-Xaa- moiety -- 1.6 - Acidolysis of the peptide C-terminal N-Me-Xaa -- 1.7 - Acidolysis of peptides with N-terminal FITC modification -- 1.8 - Acidolysis of thioamide peptide -- 1.9 - Deguanidination side reaction on Arg -- 1.10 - DKP (2,5-diketopiperazine) formation -- References -- Chapter 2 - β-Elimination Side Reactions -- 2.1 - β-Elimination of Cys sulfhydryl side chain -- 2.2 - β-Elimination of phosphorylated Ser/Thr -- References -- Chapter 3 - Peptide Global Deprotection/Scavenger-Induced Side Reactions -- 3.1 - Tert-butylation side reaction on Trp during peptide global deprotection -- 3.2 - Trp alkylation by resin linker cations during peptide cleavage/global deprotection -- 3.3 - Formation of Trp-EDT and Trp-EDT-TFA adduct in peptide global deprotection -- 3.4 - Trp dimerization side reaction during peptide global deprotection -- 3.5 - Trp reduction during peptide global deprotection -- 3.6 - Cys alkylation during peptide global deprotection -- 3.7 - Formation of Cys-EDT adducts in peptide global deprotection reaction -- 3.8 - Peptide sulfonation in side chain global deprotection reaction -- 3.9 - Premature Acm cleavage off Cys(Acm) and Acm S→ O migration during peptide global deprotection -- 3.10 - Methionine alkylation during peptide side chain global deprotection with DODT as scavenger.
,
3.11 - Thioanisole-induced side reactions in peptide side chain global deprotection -- References -- Chapter 4 - Peptide Rearrangement Side Reactions -- 4.1 - Acid catalyzed acyl N→O migration and the subsequent peptide acidolysis -- 4.2 - Base catalyzed acyl O→N migration -- 4.3 - His-Nim- induced acyl migration -- References -- Chapter 5 - Side Reactions Upon Amino Acid/Peptide Carboxyl Activation -- 5.1 - Formation of N-acylurea upon peptide/amino acid-carboxyl activation by DIC -- 5.2 - Uronium/Guanidinium salt coupling reagents-induced amino group guanidination side reactions -- 5.3 - δ-lactam formation upon Arg activation reaction -- 5.4 - NCA formation upon Boc/Z-Amino acid activation -- 5.5 - Dehydration of side chain-unprotected Asn/Gln during carboxyl-activation -- 5.6 - Formation of H-β-Ala-OSu from HOSu-carbodiimide reaction during amino acid carboxyl-activation -- 5.7 - Benzotriazinone ring opening and peptide chain termination during carbodiimide/HOOBt mediated coupling reactions -- 5.8 - Peptide chain termination through the formation of peptide N-terminal urea in CDI-mediated coupling reaction -- 5.9 - Guanidino or hydantoin-2-imide formation from carbodiimide and Na group on amino acid/peptide -- 5.10 - Side reactions-induced by curtius rearrangement on peptide acyl azide -- 5.11 - Formation of pyrrolidinamide-induced by pyrrolidine impurities in phosphonium salt -- References -- Chapter 6 - Intramolecular Cyclization Side Reactions -- 6.1 - Aspartimide formation -- 6.1.1 - Factors That Influence Aspartimide Formation -- 6.1.1.1 - Base -- 6.1.1.2 - Acid -- 6.1.1.3 - Protecting Groups on Asp Side Chain Carboxyl Group -- 6.1.1.4 - Solid Support for Peptide Synthesis -- 6.1.1.5 - Temperature -- 6.1.1.6 - Solvent -- 6.1.1.7 - Peptide Sequence -- 6.1.1.8 - Peptide Conformation -- 6.1.1.9 - Microwave.
,
6.1.2 - Solutions for Aspartimide Formation -- 6.1.2.1 - Protecting Groups on β-Carboxyl Group of Asp -- 6.1.2.2 - Base -- 6.1.2.3 - Protection on Backbone Amide and Application of Pseudoproline -- 6.1.2.4 - N-Hydroxylamine and Phenol Derivatives -- 6.1.2.5 - Na-Protecting Groups -- 6.1.2.6 - Fine-Tuning of Asp β-Carboxyl Activation -- 6.1.2.7 - Methanolysis of Aspartimide -- 6.2 - Asn/Gln deamidation and other relevant side reactions -- 6.2.1 - Mechanism of Asn/Gln Deamidation -- 6.2.2 - Factors Impacting on Asn/Gln Deamidation -- 6.2.2.1 - pH Value -- 6.2.2.2 - Peptide Sequence -- 6.2.2.3 - Peptide Conformation and Other Factors -- 6.2.3 - Influences of Asn/Gln Deamidation on Peptide Chemical Synthesis -- 6.3 - Pyroglutamate formation -- 6.4 - Hydantoin formation -- 6.5 - Side reactions on N-terminal Cys(Cam) and N-bromoacetylated peptide -- References -- Chapter 7 - Side Reactions on Amino Groups in Peptide Synthesis -- 7.1 - Na-acetylation side reactions -- 7.2 - Trifluoroacetylation side reactions -- 7.3 - Formylation side reactions -- 7.3.1 - Trp(For)-Induced Peptide Formylation -- 7.3.2 - Formic Acid-Induced Peptide Formylation -- 7.3.3 - DMF-Induced Peptide Formylation -- 7.4 - Peptide N-alkylation side reactions -- 7.4.1 - Chloromethyl Resin Induced Peptide N-Alkylation Side Reactions -- 7.4.2 - Peptide N-Alkylation During Deblocking of Na-Urethane Protecting Group -- 7.4.3 - Peptide N-Alkylation During Global Deprotection -- 7.4.3.1 - Formaldehyde-Induced Peptide N-Alkylation During Side Chain Global Deprotection -- 7.4.3.2 - Peptide N-alkylation during Pd(0)-catalyzed N-Alloc deblocking -- 7.4.4 - N-Alkylation Side Reaction on N-Terminal His via Acetone-Mediated Enamination -- 7.5 - Side reactions during amino acid Na-protection (Fmoc-OSu induced Fmoc-β-Ala-OH and Fmoc-β-Ala-AA-OH dipeptide formation) -- References.
,
Chapter 8 - Side Reactions on Hydroxyl and Carboxyl Groups in Peptide Synthesis -- 8.1 - Side reactions on Asp/Glu side chain and peptide backbone carboxylate -- 8.1.1 - Base-Catalyzed Asp/Glu(OBzl) Transesterification Side Reaction During the Loading of Chloromethyl Resin -- 8.1.2 - Esterification Side Reactions on Asp/Glu During Peptidyl Resin Cleavage and Product Purification -- 8.2 - Side reactions on Ser/Thr side chain hydroxyl groups -- 8.2.1 - Alkylation Side Reactions on Ser/Thr Side Chain Hydroxyl Groups -- 8.2.2 - Acylation Side Reactions on Ser/Thr Side Chain Hydroxyl Groups -- 8.2.2.1 - Acylation Side Reactions on Ser/Thr Side Chain Hydroxyl Groups During Amino Acid Coupling -- 8.2.2.2 - Acylation on Ser/Thr β-Hydroxyl Groups in Acidic Condition -- 8.2.2.3 - Acylation Side Reactions on Ser/Thr Side Chain Hydroxyl Groups Induced by Acid-Catalyzed Acyl N→O Migration -- 8.2.3 - β-Elimination Side Reactions on Ser/Thr -- 8.2.4 - N-Terminal Ser/Thr-Induced Oxazolidone Formation Side Reactions -- 8.2.5 - Ser/Thr-Induced Retro Aldol Cleavage Side Reaction -- References -- Chapter 9 - Peptide Oxidation/Reduction Side Reactions -- 9.1 - Oxidation side reactions on Cys -- 9.2 - Oxidation side reactions on Met -- 9.3 - Oxidation side reactions on Trp -- 9.4 - Oxidation side reactions on other amino acids and AT nonsynthetic steps -- 9.5 - Peptide reduction side reactions -- References -- Chapter 10 - Redundant Amino Acid Coupling Side Reactions -- 10.1 - Dipeptide formation during amino acid Na-Fmoc derivatization -- 10.2 - Redundant amino acid coupling via premature Fmoc deprotection -- 10.2.1 - Lys-Nε-Induced Fmoc Premature Cleavage -- 10.2.2 - Na-Proline-Induced Fmoc Premature Cleavage -- 10.2.3 - DMF/NMP-Induced Fmoc Premature Cleavage -- 10.2.4 - Residual Piperidine-Induced Fmoc Premature Cleavage.
,
10.2.5 - DMAP/DIEA-Induced Fmoc Premature Cleavage -- 10.2.6 - Hydrogenation-Induced Fmoc Premature Cleavage -- 10.2.7 - Fmoc Deblocking in the Starting Material -- 10.3 - Redundant amino acid coupling induced by NCA formation -- 10.4 - His-Nim promoted Gly redundant incorporation -- 10.5 - Redundant coupling induced by the undesired amino acid-CTC resin cleavage -- 10.6 - Redundant amino acid coupling induced by insufficient resin rinsing -- 10.7 - Redundant amino acid coupling induced by overacylation side reaction -- References -- Chapter 11 - Peptide Racemization -- 11.1 - Peptide racemization mechanism -- 11.1.1 - Peptide Racemization via Oxazol-5(4H)-one Formation -- 11.1.2 - Peptide Racemization via Enolate Formation -- 11.1.3 - Peptide Racemization via Direct Ha Abstraction -- 11.1.4 - Peptide Racemization via Aspartimide Formation -- 11.1.5 - Acid-Catalyzed Peptide Racemization -- 11.2 - Racemization in peptide synthesis -- 11.2.1 - Amino Acids with a High Tendency of Racemization in Peptide Synthesis -- 11.2.1.1 - Histidine -- 11.2.1.2 - Cysteine -- 11.2.1.3 - Glycosylated Amino Acid -- 11.2.1.4 - N-Alkyl Amino Acid and Ca,a-Disubstituted Amino Acid -- 11.2.1.5 - Aryl Glycine Derivatives -- 11.2.2 - DMAP-Induced Racemization -- 11.2.3 - Microwave Irradiation-Induced Racemization -- 11.2.4 - Racemization During Peptide Segment Condensation -- 11.3 - Strategies to suppress racemization in peptide synthesis -- 11.3.1 - Amino Acid Na-Protecting Group -- 11.3.1.1 - Na-Urethane Protecting Group -- 11.3.1.2 - Na-Sulfanyl Protecting Group -- 11.3.1.3 - Na-Sulfonyl Protecting Group -- 11.3.1.4 - Na-Alkyl Protecting Group -- 11.3.1.5 - Na,Na-bis Protection Strategy -- 11.3.1.6 - α-Azido Acid as Synthon of Amino Acid -- 11.3.2 - Amino Acid Side Chain Protecting Group -- 11.3.2.1 - Cys Side Chain Protecting Groups.
,
11.3.2.2 - His Side Chain Protecting Groups.
,
English
Sprache:
Englisch
Bookmarklink