UID:
almafu_9960074038002883
Umfang:
1 online resource (0 p.)
ISBN:
9780128025369
,
0128025360
,
9780128022382
,
0128022388
Anmerkung:
Description based upon print version of record.
,
Front Cover -- Unconventional Oil and Gas Resources Handbook Evaluation and Development -- Copyright -- Contents -- List of Contributors -- Preface -- PART 1 - GENERAL TOPICS -- 1 - UNCONVENTIONAL RESOURCES FROM EXPLORATION TO PRODUCTION -- 1.1 INTRODUCTION -- 1.2 EXPLORATION AND EARLY APPRAISAL -- 1.2.1 PETROLEUM SYSTEM ANALYSIS AND MODELING -- 1.2.2 RESOURCE PROSPECTING AND RANKING -- 1.3 EVALUATION -- 1.3.1 MINERALOGICAL COMPOSITION -- 1.3.2 PORES -- 1.3.3 HYDROCARBON SATURATION AND TYPES -- 1.3.4 PERMEABILITY -- 1.3.5 COMPLETION QUALITY -- 1.3.6 PRESSURE -- 1.3.7 INTEGRATED EVALUATION -- 1.4 DRILLING -- 1.5 COMPLETION AND STIMULATION -- 1.5.1 FRACTURE GEOMETRY AND COMPLEXITY -- 1.5.2 FRACTURING FLUID AND PROPPANT -- 1.5.3 FRACTURING STAGES -- 1.6 PRODUCTION -- 1.6.1 PRODUCTION DRIVERS -- 1.6.2 CALIBRATING THE DRIVERS TO PRODUCTION -- 1.6.3 MICROSEISMIC MONITORING -- 1.6.4 REFRACTURING TREATMENT -- 1.6.5 ARTIFICIAL LIFT -- 1.6.6 TRACER, LEAKOFF, AND FLOWBACK -- 1.6.7 HEAVY OIL AND PRODUCTION FROM OIL SANDS -- 1.6.8 WATER MANAGEMENT -- 1.7 UNCONVENTIONAL GLOBALIZATION -- 1.7.1 GLOBAL UNCONVENTIONAL RESOURCES -- 1.7.2 NATIONAL SECURITY MATTER AND ENVIRONMENTAL CONCERNS -- 1.7.3 CHALLENGES IN GLOBAL DEVELOPMENT OF UNCONVENTIONAL RESOURCES -- 1.7.3.1 Uncertainty and Risk in Resource Estimates -- 1.7.3.2 Technologies for Developing Difficult Unconventional Resources -- 1.7.3.3 Water Stress -- 1.7.3.4 Environmental Considerations -- 1.8 CONCLUSIONS -- LIST OF ABBREVIATIONS -- UNITS -- Acknowledgments -- REFERENCES -- 2 - WORLD RECOVERABLE UNCONVENTIONAL GAS RESOURCES ASSESSMENT -- 2.1 INTRODUCTION -- 2.1.1 PETROLEUM RESOURCES MANAGEMENT SYSTEM (PRMS) -- 2.1.2 ENERGY INFORMATION ADMINISTRATION (EIA) CLASSIFICATION SYSTEM -- 2.1.3 BASIN TYPES AND GLOBAL DISTRIBUTION OF BASINS -- 2.1.4 MONTE CARLO PROBABILISTIC APPROACH -- 2.2 METHODOLOGY.
,
2.3 GLOBAL UNCONVENTIONAL GAS ORIGINAL GAS-IN-PLACE ASSESSMENT -- 2.3.1 CBM OGIP -- 2.3.2 TIGHT GAS OGIP -- 2.3.3 SHALE GAS ORIGINAL GAS-IN-PLACE -- 2.4 TECHNICALLY RECOVERABLE RESOURCES RECOVERY FACTOR -- 2.4.1 COAL BED METHANE RECOVERY FACTORS -- 2.4.2 TIGHT GAS RECOVERY FACTORS -- 2.4.3 SHALE GAS RECOVERY FACTORS -- 2.5 GLOBAL RECOVERABLE UNCONVENTIONAL GAS RESOURCE EVALUATION -- 2.5.1 COAL BED METHANE TECHNICALLY RECOVERABLE RESOURCES -- 2.5.2 TIGHT GAS TECHNICALLY RECOVERABLE RESOURCES -- 2.5.3 SHALE GAS TRR -- 2.6 DISCUSSION -- 2.7 CONCLUSION -- NOMENCLATURE -- REFERENCES -- 3 - GEOCHEMISTRY APPLIED TO EVALUATION OF UNCONVENTIONAL RESOURCES -- 3.1 INTRODUCTION -- 3.1.1 SUBSURFACE EVOLUTION OF ORGANIC MATTER -- 3.1.2 CONVENTIONAL VERSUS UNCONVENTIONAL RESOURCES -- 3.1.3 EMPIRICAL MEASURES OF SWEET SPOTS -- 3.2 DISCUSSION -- 3.2.1 ORGANIC GEOCHEMICAL AND PETROPHYSICAL CHARACTERIZATION -- 3.2.1.1 Rock-Eval Pyrolysis -- 3.2.1.2 Total Organic Carbon -- 3.2.1.3 Geochemical Methods for TOC -- 3.2.1.4 Indirect Wireline TOC -- 3.2.1.5 Direct Wireline TOC -- 3.2.2 ORGANIC GEOCHEMICAL LOGS AND ANCILLARY TOOLS -- 3.2.2.1 Van Krevelen Diagrams -- 3.2.2.2 TOC versus S2 Plots -- 3.2.2.3 Organic Petrography -- 3.2.3 INORGANIC GEOCHEMICAL LOGS -- 3.2.4 FLUID ADSORPTION IN UNCONVENTIONAL RESERVOIRS -- 3.2.4.1 Quantifying Adsorption under Reservoir Conditions -- 3.2.5 CONTRIBUTION OF ADSORBED GAS TO GAS-IN-PLACE AND PRODUCTION -- 3.2.6 HYDROCARBON GENERATION, EXPULSION, AND RETENTION -- 3.2.7 STABLE CARBON ISOTOPE ROLLOVER -- 3.2.8 EFFECT OF TRANSIENT FLOW ON GEOCHEMICAL PARAMETERS -- 3.2.9 MASS BALANCE AND HYDROCARBON GAS RETENTION EFFICIENCY -- 3.2.10 BASIN AND PETROLEUM SYSTEM MODELING -- 3.2.10.1 SARA Modeling -- 3.2.11 EXAMPLE OF BPSM MODELING FOR SHALE GAS -- 3.2.12 KEROGEN ANALYSES FOR STRUCTURAL ELUCIDATION -- 3.2.12.1 Elemental Analysis.
,
3.2.12.2 Nuclear Magnetic Resonance Spectroscopy -- 3.2.12.3 Infrared spectroscopy -- 3.2.12.4 X-ray Absorption Near-Edge Structure Spectroscopy -- 3.2.12.5 Other Methods -- 3.2.13 KEROGEN STRUCTURE THROUGH ASPHALTENE CHEMISTRY -- 3.3 CONCLUSIONS -- 3.4 APPENDIX: KEROGEN TYPES AND PREPARATION -- 3.4.1 KEROGEN TYPES -- 3.4.2 KEROGEN PREPARATION -- Acknowledgments -- REFERENCES -- 4 - PORE-SCALE CHARACTERIZATION OF GAS FLOW PROPERTIES IN SHALE BY DIGITAL CORE ANALYSIS -- 4.1 INTRODUCTION -- 4.2 GAS SHALE CHARACTERIZATION BY DCA -- 4.2.1 IMAGING POROUS SAMPLES -- 4.2.2 PORE-SCALE CHARACTERIZATION AND RECONSTRUCTION -- 4.2.3 MODELING PORE-SCALE PHYSICOCHEMICAL PROCESSES -- 4.2.4 DETERMINATION OF MACROSCOPIC PROPERTIES FOR A SAMPLE -- 4.3 GAS FLOW BEHAVIORS IN SHALE PORES AND PORE-NETWORK MODELS -- 4.3.1 GAS FLOW REGIMES -- 4.3.2 BEHAVIORS OF APPARENT GAS PERMEABILITY -- 4.4 SURFACE ADSORPTION/DESORPTION AND AN EFFECTIVE MULTILAYER ADSORPTION MODEL -- 4.4.1 BASICS OF ADSORPTION AND DESORPTION -- 4.4.2 GAS-SOLID ADSORPTION MODELS -- 4.4.3 HETEROGENEOUS MULTILAYER GAS ADSORPTION AND FREE GAS FLOW -- 4.5 AGGREGATED EFFECT ON THE PREDICTED GAS PERMEABILITY -- 4.6 CONCLUSIONS -- Acknowledgments -- REFERENCES -- 5 - WIRELINE LOG SIGNATURES OF ORGANIC MATTER AND LITHOFACIES CLASSIFICATIONS FOR SHALE AND TIGHT CARBONATE RESERVOIRS -- 5.1 INTRODUCTION AND OVERVIEW -- 5.1.1 LITHOFACIES IN SHALE RESERVOIRS -- 5.1.2 OVERVIEW OF WIRELINE LOG RESPONSES TO ORGANIC MATTER -- 5.1.3 SCOPE -- 5.2 REVIEW OF LITHOFACIES CLASSIFICATION IN CONVENTIONAL FORMATION EVALUATION -- 5.3 TIGHT CARBONATE RESERVOIRS WITHOUT PRESENCE OF ORGANIC SHALE -- 5.4 SHALE RESERVOIRS WITH THE PRESENCE OF CARBONATE LITHOFACIES AND WITHOUT SILICEOUS LITHOFACIES -- 5.5 FORMATIONS WITH A MIXTURE OF CLAYEY, SILICEOUS, CARBONATE AND ORGANIC LITHOFACIES.
,
5.6 MULTILEVEL CLUSTERING OF LITHOFACIES AND ROCK TYPES -- 5.7 CONCLUSIONS -- Acknowledgment -- REFERENCES -- 5 . APPENDIX A: A TUTORIAL ON PRINCIPAL COMPONENT ANALYSIS -- 6 - THE ROLE OF PORE PROXIMITY IN GOVERNING FLUID PVT BEHAVIOR AND PRODUCED FLUIDS COMPOSITION IN LIQUIDS-RICH SHAL ... -- 6.1 INTRODUCTION -- 6.2 PORE CONFINEMENT EFFECTS ON FLUID PROPERTIES -- 6.2.1 EFFECTS OF CONFINEMENT ON ALKANE CRITICAL PROPERTIES -- 6.2.2 EFFECT OF CONFINEMENT ON PHASE BEHAVIOR OF MULTICOMPONENT MIXTURES -- 6.3 MULTICOMPONENT FLUID TRANSPORT IN NANOPORES -- 6.3.1 COMPOSITIONAL VARIATIONS IN PRODUCED FLUIDS -- 6.3.1.1 Synthetic Oil Case Study -- 6.3.1.2 Black Oil Case Study -- 6.4 IMPLICATIONS OF PORE PROXIMITY ON WELL DRAINAGE AREAS AND PRODUCTIVITY -- 6.4.1 DESCRIPTION OF THE NUMERICAL SIMULATION MODEL -- 6.5 MODIFICATIONS TO EXISTING EQUATIONS-OF-STATE -- 6.6 IMPACT TO PRODUCERS -- 6.7 SUMMARY AND CONCLUSIONS -- REFERENCES -- 7 - GEOMECHANICS FOR UNCONVENTIONAL RESERVOIRS -- 7.1 INTRODUCTION -- 7.2 MECHANICAL EARTH MODEL -- 7.2.1 MECHANICAL PROPERTIES -- 7.2.2 ROCK STRENGTH -- 7.2.3 PORE PRESSURE -- 7.2.4 STRESSES -- 7.2.4.1 Vertical Stress -- 7.2.4.2 Minimum and Maximum Horizontal Stress -- 7.2.4.3 Stress Direction -- 7.2.5 MODEL VALIDATION AND CALIBRATION -- 7.3 DRILLING APPLICATIONS FOR UNCONVENTIONAL RESERVOIRS -- 7.3.1 WELLBORE STABILITY -- 7.3.1.1 Kick -- 7.3.1.2 Losses and Breakdown -- 7.3.1.3 Wellbore Damage -- 7.3.1.4 Depth of Failure -- 7.3.2 DEVIATION AND AZIMUTH -- 7.4 COMPLETION APPLICATIONS FOR UNCONVENTIONAL RESERVOIRS -- 7.5 CONCLUSIONS -- Acknowledgments -- REFERENCES -- 8 - HYDRAULIC FRACTURE TREATMENT, OPTIMIZATION, AND PRODUCTION MODELING -- 8.1 INTRODUCTION -- 8.2 FRACTURE FLUID AND PROPPANT SELECTIONS -- 8.2.1 FLUID SELECTION -- 8.2.2 PROPPANT SELECTION -- 8.3 OPTIMIZING FRACTURE DESIGN AND COMPLETION STRATEGIES.
,
8.3.1 BUILDING A CALIBRATED MECHANICAL EARTH MODEL -- 8.3.2 SELECTING THE ADEQUATE FRACTURE MODEL -- 8.3.3 ESTIMATING FRACTURE PROPERTIES -- 8.4 PRODUCTION MODELING -- 8.4.1 ANALYTICAL VERSUS NUMERICAL MODELS -- 8.4.2 CONSOLIDATING A PREDICTIVE MODEL -- 8.4.3 MANAGING UNCERTAINTY -- 8.4.4 MODEL APPLICATIONS -- 8.5 ECONOMIC AND OPERATIONAL CONSIDERATIONS -- 8.5.1 OPERATIONAL AND LOGISTIC ANALYSES -- 8.6 CONCLUSION AND DISCUSSIONS -- NOMENCLATURE -- REFERENCES -- 9 - THE APPLICATION OF MICROSEISMIC MONITORING IN UNCONVENTIONAL RESERVOIRS -- 9.1 INTRODUCTION -- 9.2 MICROSEISMIC MONITORING BASICS -- 9.2.1 CONCEPTS AND BACKGROUND -- 9.2.1.1 What Is Microseismicity? -- 9.2.1.2 Microseismic Applications -- 9.2.2 MICROSEISMIC MONITORING AND PROCESSING -- 9.2.3 IMPORTANT PARAMETERS -- 9.2.3.1 Velocity -- 9.2.3.2 Moment Magnitude -- 9.2.3.3 Signal to Noise Ratio (SNR) -- 9.2.3.4 b-Value -- 9.2.3.5 D-Value -- 9.2.3.6 S/P Ratio -- 9.2.3.7 Focal Mechanisms -- 9.3 MICROSEISMIC APPLICATION TO UNCONVENTIONAL RESOURCE DEVELOPMENT -- 9.3.1 MICROSEISMIC EVENT PARAMETERS -- 9.3.2 APPLICATIONS AND CASE STUDIES -- 9.3.2.1 Fracture Azimuth -- 9.3.2.2 Natural Fractures -- 9.3.2.3 Real Time Processing and Analysis -- 9.3.2.4 Fracture Encounter -- 9.3.2.5 Refracturing and Diversion -- 9.3.2.6 Isolation and Overlapping -- 9.3.2.7 Different Fracture Fluid -- 9.3.2.8 Different Completions -- 9.3.2.9 In-Treatment Well Monitoring -- 9.3.2.10 Permanent Monitoring -- 9.3.2.11 Geomechanics -- 9.3.2.12 Source Mechanism -- 9.3.3 STATISTICAL ANALYSIS -- 9.3.3.1 Moment Magnitude Versus Distance -- 9.3.3.2 Depth Contribution -- 9.3.3.3 Fracture Complexity -- 9.3.3.4 Fracture Length and Well Spacing -- 9.3.3.5 S/P Ratio -- 9.3.3.6 b-Value and D-Value -- 9.4 CONCLUSIONS -- APPENDIX -- A.1 MICROSEISMIC TECHNOLOGY DEVELOPMENT HISTORY -- A.2 MICROSEISMIC PROCESSING METHODS.
,
A.3 TOOL DEPLOYMENT.
,
English
Sprache:
Englisch
Bookmarklink