Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    almafu_9960074136102883
    Umfang: 1 online resource (218 pages) : , illustrations
    ISBN: 9780128022603 , 0128022604
    Anmerkung: Front Cover -- A Historical Introduction to Mathematical Modeling of Infectious Diseases -- Copyright -- Dedication -- Contents -- Introduction -- Motivation and short history (of this book) -- Structure and suggested use of the book -- Target audience -- Mathematical background -- Miscellaneous remarks -- References -- Acknowledgments -- 1 D. Bernoulli: A pioneer of epidemiologic modeling (1760) -- 1.1 Bernoulli and the "speckled monster -- 1.1.1 1 through 4: Preamble -- 1.1.2 5 through 6: Mathematical foundation -- 1.1.3 7 through 9: Table 1 -- 1.1.4 11 & -- 12: Table 2 -- 1.1.5 13: Closed form solution for the counterfactual survivors -- Appendix 1.A Answers -- Appendix 1.B Supplementary material -- References -- 2 P.D. En'ko: An early transmission model (1889) -- 2.1 Introduction -- 2.2 Assumptions -- 2.3 The model -- 2.4 Simulation model -- 2.4.1 Start of the simulation -- 2.4.2 Discussion of Table 1 and Figures -- 2.4.3 An important detail: The period -- Appendix 2.A Answers -- Appendix 2.B Supplementary material -- References -- 3 W.H. Hamer (1906) and H. Soper (1929): Why diseases come and go -- 3.1 Introduction -- 3.2 Hamer: Variability and persistence -- 3.2.1 A tortuous introduction -- 3.2.2 Characteristic of periodic measles epidemics -- 3.2.3 The case of influenza -- 3.3 Soper: Periodicity in disease prevalence -- Regeneration" of the population -- Law of infection -- Mass action -- 3.3.1 Infection dynamics -- 3.3.2 The simulated epidemic -- 3.3.3 Periods -- 3.3.4 Considerations of seasonal factors and model fit to Glasgow data -- Appendix 3.A -- The discussion -- Appendix 3.B Answers -- Appendix 3.C Supplementary material -- References -- 4 W.O. Kermack and A.G. McKendrick: A seminal contribution to the mathematical theory of epidemics (1927) -- 4.1 Introduction -- 4.2 General theory: (2) through (7). , 4.2.1 (2): The infection process in discrete time -- 4.2.2 (3): The infection process in continuous time -- 4.2.3 (6): The proportion infected -- 4.3 Special cases: (8) through (13) -- 4.3.1 (10): The "Kermack & -- McKendrick model -- 4.3.2 (12): Extension to vector-borne diseases -- Appendix 4.A -- Appendix 4.B Answers -- Appendix 4.C Supplementary material -- References -- 5 R. Ross (1910, 1911) and G. Macdonald (1952) on the persistence of malaria -- 5.1 Introduction -- 5.2 Ross: What keeps malaria going? -- 5.2.1 "Laws which Regulate the Amount of Malaria in a Locality -- 5.2.2 Final remarks on Ross's modeling contributions -- 5.3 George Macdonald: Malaria equilibrium beyond Ross -- 5.3.1 A linear model -- 5.3.2 The "basic reproduction rate of malaria -- 5.3.3 Comparing Ross's-implicit-and Macdonald's R0 for malaria -- Appendix 5.A Answers -- References -- 6 M. Bartlett (1949), N.T. Bailey (1950, 1953) and P. Whittle (1955): Pioneers of stochastic transmission models -- 6.1 Introduction: Stochastic transmission models -- 6.2 Bailey: A simple stochastic transmission model -- 6.2.1 Deterministic approach -- 6.2.2 Stochastic approach -- 6.3 M.S. Bartlett: Infectious disease transmission as stochastic process -- 6.3.1 Fundamentals -- 6.3.2 The change in the probability-generating function over time -- 6.3.3 Mean value equations -- 6.4 Bailey revisited: Final size of a stochastic epidemic -- 6.4.1 Reference to Bartlett -- 6.4.2 Household outbreaks and parameter estimation -- 6.5 P. Whittle: Comment on Bailey -- 6.5.1 Introduction -- 6.5.2 Recurrence relationship -- 6.5.3 A slow wind-down-not without somewhat of a(n anti-)climax -- Appendix 6.A Answers -- Appendix 6.B Supplementary material -- References. , 7 O. Diekmann, J. Heesterbeek, and J.A. Metz (1991) and P. Van den Driessche and J. Watmough (2002): The spread of infectious diseases in heterogeneous populations -- 7.1 Introduction: Non-homogeneous transmission -- 7.2 Diekmann, Heesterbeek and Metz: The basic reproduction number in heterogeneous populations I -- 7.2.1 A-more or less brief-detour -- 7.2.2 Returning to the original -- 7.2.3 R0-for the second time -- 7.2.4 From generations to time -- 7.3 P. Van den Driessche and J. Watmough: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission -- 7.3.1 The model -- 7.3.2 Lemma 1-getting ready for R0 -- 7.3.3 Finally: R0 -- 7.3.4 Again: A vector-host model -- 7.3.5 Final remarks -- Appendix 7.A Answers -- Appendix 7.B Supplementary material -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 9780128024997
    Weitere Ausg.: ISBN 0128024992
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 012802204?
Meinten Sie 0128020644?
Meinten Sie 0128016604?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz