Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo : Elsevier Academic Press
    UID:
    b3kat_BV044908174
    Umfang: 1 Online-Ressource
    ISBN: 0128025034 , 9780128025031
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-802263-4
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    Schlagwort(e): Digital-Analog-Umsetzer ; Radiofrequenzbereich ; CMOS ; Nanometerbereich
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9948026373802882
    Umfang: 1 online resource (304 pages) : , illustrations
    Ausgabe: First edition.
    ISBN: 0-12-802503-4
    Inhalt: With the proliferation of wireless networks, there is a need for more compact, low-cost, power efficient transmitters that are capable of supporting the various communication standards, including Bluetooth, WLAN, GSM/EDGE, WCDMA and 4G of 3GPP cellular. This book describes a novel idea of RF digital-to-analog converters (RFDAC) and demonstrates how they can realize all-digital, fully-integrated RF transmitters that support all the current multi-mode and multi-band communication standards. With this book the reader will: Understand the challenges of realizing a universal CMOS RF transmitter Recognize the design issues and the advantages and disadvantages related to analog and digital transmitter architectures Master designing an RF transmitter from system level modeling techniques down to circuit designs and their related layout know-hows Grasp digital polar and I/Q calibration techniques as well as the digital predistortion approaches Learn how to generate appropriate digital I/Q baseband signals in order to apply them to the test chip and measure the RF-DAC performance. Highlights the benefits and implementation challenges of software-defined transmitters using CMOS technology Includes various types of analog and digital RF transmitter architectures for wireless applications Presents an all-digital polar RFDAC transmitter architecture and describes in detail its implementation Presents a new all-digital I/Q RFDAC transmitter architecture and its implementation Provides comprehensive design techniques from system level to circuit level Introduces several digital predistortion techniques which can be used in RF transmitters Describes the entire flow of system modeling, circuit simulation, layout techniques and the measurement process
    Anmerkung: Front Cover -- Radio-Frequency Digital-to-Analog Converters: Implementation in Nanoscale CMOS -- Copyright -- Contents -- Preface -- Acknowledgment -- Acronyms -- Chapter 1: Introduction -- 1.1 The Conventional RF Radio -- 1.2 Motivation -- 1.3 The Book Objectives -- 1.3.1 System Simulation of WCDMA Baseband Data -- 1.3.2 Some Important Figures-of-Merit in RF Transmitters -- 1.4 Analog Versus Digital RF Transmitters -- 1.5 Analog-Intensive RF Transmitters -- 1.6 Digitally Intensive RF Transmitters -- 1.7 New Paradigm of RF Design in Nanometer-Scale CMOS -- 1.8 All-Digital Polar Transmitter -- 1.9 All-Digital I/Q Transmitter -- 1.10 Conclusion -- 1.11 Book Outline -- Chapter 2: Digital polar transmitter architecture -- 2.1 Introduction to Narrowband Polar Transmitters -- 2.1.1 Motivation -- 2.1.1.1 Small-signal polar transmitter -- 2.1.1.2 Motivation for the digitally intensive amplitude path -- 2.1.2 Contrast With Conventional Analog Approaches -- 2.2 Overview of the RFDAC-Based Polar Transmitter Architecture -- 2.2.1 Overview of the DPA -- 2.2.2 DCO Operating Frequency and CKV Clock -- 2.3 Details of Phase Modulation -- 2.4 Design Challenges for the Small-Signal Polar Transmitter -- 2.4.1 DCO Phase Noise -- 2.4.2 DCO Pulling and Pushing -- 2.4.3 VGA/DPA Nonlinearity -- 2.4.4 Amplitude-Phase Path Delay Mismatch -- 2.4.5 Amplitude-Phase Path Transfer Function Mismatch -- 2.4.6 Amplitude Path DC Offset -- 2.4.7 Amplitude Path Dynamic Range Limitations -- 2.4.8 Amplitude Path DAC Mismatches -- 2.4.9 Additional Distortions in the DPA (DAC/Mixer) -- Chapter 3: Digital baseband of the polar transmitter -- 3.1 Overview of the TX Digital Baseband -- 3.1.1 Pulse Shaping Filter -- 3.1.2 Resampler -- 3.1.2.1 Need for a resampler -- 3.1.2.2 Implementation -- 3.1.3 CORDIC -- 3.2 Predistortion Module -- 3.2.1 Overview -- 3.2.2 Principle of Operation. , 3.2.2.1 Adaptive interpolation -- 3.2.2.2 Dynamic LUT inversion -- 3.2.3 Analysis of the Quantization Effects -- 3.3 Predistortion Self-Calibration -- 3.3.1 Effect of Temperature Variations on Predistortion -- 3.4 Interpolative Filter -- 3.5 Polar Bandwidth Expansion -- Chapter 4: RF front-end (RFDAC) of the polar transmitter -- 4.1 Overview of the RF Front-End -- 4.2 Σ∆ Amplitude Modulation -- 4.2.1 Σ∆ Overview -- 4.2.2 Digital Design -- 4.2.3 Transfer Function and Spectrum -- 4.3 Digital Pre-PA -- 4.3.1 Overview of DPA Functionality -- 4.3.2 Analysis of DPA Quantization Noise -- 4.3.3 DPA Structural Design -- 4.4 DPA Transistor Mismatches -- 4.4.1 Amplitude Mismatch -- 4.4.2 Phase Mismatch -- 4.5 Key Categories of Mismatches and DEM -- 4.5.1 Key Categories -- 4.5.1.1 MSB (4x) transistor mismatch -- 4.5.1.2 Unit (1x) transistor mismatch -- 4.5.1.3 Systematic mismatch between 1x and 4x transistors -- 4.5.2 Simulation-Based Specifications -- 4.5.3 Dynamic Element Matching -- 4.5.4 Measurement Results -- 4.6 Clock Delay Alignment -- 4.6.1 Explanation of the Problem -- 4.6.2 Self-Calibration and Compensation Mechanism -- 4.7 Analysis of Parasitic Coupling -- 4.7.1 Possible Coupling Paths -- 4.7.2 A Novel Method of Characterizing Σ∆ Parasitic Coupling Using Idle-Tones -- 4.7.3 Relationship Between Idle Tones and Σ∆ Parasitic Coupling -- Chapter 5: Simulation and measurement results of the polar transmitter -- 5.1 Simulation Results -- 5.2 Measurement Results -- 5.2.1 Predistortion -- 5.2.2 Transmitter Close-In Performance -- 5.2.3 Transmitter Wideband Noise Performance -- 5.2.4 Performance Comparison -- 5.3 Conclusion -- Chapter 6: Idea of all-digital I/Q modulator -- 6.1 Concept of Digital I/Q Transmitter -- 6.2 Orthogonal Summing Operation of RFDAC -- 6.3 Conclusion -- Chapter 7: Orthogonal summation: A 2x3-bit all-digital I/Q RFDAC. , 7.1 Circuit Building Blocks of Digital I/Q Modulator -- 7.1.1 Digitally Controlled Oscillator -- 7.1.2 Divide-By-Two Circuit -- 7.1.3 25% Duty Cycle generator -- 7.1.4 Sign Bit Circuit -- 7.1.5 Implicit Mixer Circuit -- 7.1.6 2x3-Bit I/Q Switch Array Circuits -- 7.2 Measurement Results -- 7.3 Conclusion -- Chapter 8: Toward high-resolution RFDAC: The system design perspective -- 8.1 System Design Considerations -- 8.2 Conclusion -- Chapter 9: Differential I/Q DPA and power-combining network -- 9.1 Idealized Power Combiner With Different DRACs -- 9.2 A Differential I/Q Class-E-Based Power Combiner -- 9.3 Efficiency of I/Q RFDAC -- 9.4 Effect of Rise/Fall Time and Duty Cycle -- 9.5 Efficiency and Noise at Back-Off Levels -- 9.6 Design an Efficient Balun for Power Combiner -- 9.7 Conclusion -- Chapter 10: A wideband 2x13-bit all-digital I/Q RFDAC -- 10.1 Clock Input Transformer -- 10.2 High-Speed Rail-to-Rail Differential Dividers -- 10.3 Complementary Quadrature Sign Bit -- 10.4 Differential Quadrature 25% Duty Cycle Generator -- 10.5 Floorplanning of 2x 13-Bit DRAC -- 10.6 Thermometer Encoders of 3-to-7 and 4-to-15 -- 10.7 DRAC Unit Cell: MSB and LSB -- 10.8 MSB/LSB Selection Choices -- 10.9 Digital I/Q Calibration and DPD Techniques -- 10.9.1 IQ Image and Leakage Suppression -- 10.9.2 DPD Based on AM-AM and AM-PM Profiles -- 10.9.3 DPD Based on I/Q Code Mapping -- 10.9.4 DPD Required Memory and Time -- 10.9.5 DPD Effectiveness Against the Temperatureand Aging -- 10.9.6 Verification of DPD I/Q Code Mapping -- 10.10 Conclusion -- Chapter 11: Measurement results of the 2x13-bit I/Q RFDAC -- 11.1 Measurement Setup -- 11.2 Static Measurement Results -- 11.3 Dynamic Measurement Results -- 11.3.1 LO Leakage and IQ Image Suppression of I/Q RFDAC -- 11.3.2 The RFDAC's Linearity Using AM-AM/AM-PM Profiles. , 11.3.3 The RFDAC's Linearity Using Constellation Mapping -- 11.4 Conclusion -- Chapter 12: Future of RFDAC -- 12.1 The Outcome -- 12.2 Some Suggestions for Future Developments -- 12.3 Future Trends -- Appendix A: Appendix for the polar transmitter -- A.1 EDGE Modulation -- A.1.1 Symbol Mapping and Rotation -- A.1.2 Pulse Shaping Filter and Modulation -- A.2 RF System Specifications for the EDGE Transmitter -- A.3 Details of the Simulation Model -- A.3.1 Digital Amplitude and Phase Data Generation -- A.3.2 RF Front-End Model -- Appendix B: Appendix for I/Q RFDAC -- B.1 Universal Asynchronous Receiver/Transmitter -- B.2 Matching Network Equations -- B.3 AM-AM/AM-PM Relationship -- B.4 DPD Bandwidth Expansion -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 0-12-802263-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edoccha_9960074075102883
    Umfang: 1 online resource (304 pages) : , illustrations
    Ausgabe: First edition.
    ISBN: 0-12-802503-4
    Inhalt: With the proliferation of wireless networks, there is a need for more compact, low-cost, power efficient transmitters that are capable of supporting the various communication standards, including Bluetooth, WLAN, GSM/EDGE, WCDMA and 4G of 3GPP cellular. This book describes a novel idea of RF digital-to-analog converters (RFDAC) and demonstrates how they can realize all-digital, fully-integrated RF transmitters that support all the current multi-mode and multi-band communication standards. With this book the reader will: Understand the challenges of realizing a universal CMOS RF transmitter Recognize the design issues and the advantages and disadvantages related to analog and digital transmitter architectures Master designing an RF transmitter from system level modeling techniques down to circuit designs and their related layout know-hows Grasp digital polar and I/Q calibration techniques as well as the digital predistortion approaches Learn how to generate appropriate digital I/Q baseband signals in order to apply them to the test chip and measure the RF-DAC performance. Highlights the benefits and implementation challenges of software-defined transmitters using CMOS technology Includes various types of analog and digital RF transmitter architectures for wireless applications Presents an all-digital polar RFDAC transmitter architecture and describes in detail its implementation Presents a new all-digital I/Q RFDAC transmitter architecture and its implementation Provides comprehensive design techniques from system level to circuit level Introduces several digital predistortion techniques which can be used in RF transmitters Describes the entire flow of system modeling, circuit simulation, layout techniques and the measurement process
    Anmerkung: Front Cover -- Radio-Frequency Digital-to-Analog Converters: Implementation in Nanoscale CMOS -- Copyright -- Contents -- Preface -- Acknowledgment -- Acronyms -- Chapter 1: Introduction -- 1.1 The Conventional RF Radio -- 1.2 Motivation -- 1.3 The Book Objectives -- 1.3.1 System Simulation of WCDMA Baseband Data -- 1.3.2 Some Important Figures-of-Merit in RF Transmitters -- 1.4 Analog Versus Digital RF Transmitters -- 1.5 Analog-Intensive RF Transmitters -- 1.6 Digitally Intensive RF Transmitters -- 1.7 New Paradigm of RF Design in Nanometer-Scale CMOS -- 1.8 All-Digital Polar Transmitter -- 1.9 All-Digital I/Q Transmitter -- 1.10 Conclusion -- 1.11 Book Outline -- Chapter 2: Digital polar transmitter architecture -- 2.1 Introduction to Narrowband Polar Transmitters -- 2.1.1 Motivation -- 2.1.1.1 Small-signal polar transmitter -- 2.1.1.2 Motivation for the digitally intensive amplitude path -- 2.1.2 Contrast With Conventional Analog Approaches -- 2.2 Overview of the RFDAC-Based Polar Transmitter Architecture -- 2.2.1 Overview of the DPA -- 2.2.2 DCO Operating Frequency and CKV Clock -- 2.3 Details of Phase Modulation -- 2.4 Design Challenges for the Small-Signal Polar Transmitter -- 2.4.1 DCO Phase Noise -- 2.4.2 DCO Pulling and Pushing -- 2.4.3 VGA/DPA Nonlinearity -- 2.4.4 Amplitude-Phase Path Delay Mismatch -- 2.4.5 Amplitude-Phase Path Transfer Function Mismatch -- 2.4.6 Amplitude Path DC Offset -- 2.4.7 Amplitude Path Dynamic Range Limitations -- 2.4.8 Amplitude Path DAC Mismatches -- 2.4.9 Additional Distortions in the DPA (DAC/Mixer) -- Chapter 3: Digital baseband of the polar transmitter -- 3.1 Overview of the TX Digital Baseband -- 3.1.1 Pulse Shaping Filter -- 3.1.2 Resampler -- 3.1.2.1 Need for a resampler -- 3.1.2.2 Implementation -- 3.1.3 CORDIC -- 3.2 Predistortion Module -- 3.2.1 Overview -- 3.2.2 Principle of Operation. , 3.2.2.1 Adaptive interpolation -- 3.2.2.2 Dynamic LUT inversion -- 3.2.3 Analysis of the Quantization Effects -- 3.3 Predistortion Self-Calibration -- 3.3.1 Effect of Temperature Variations on Predistortion -- 3.4 Interpolative Filter -- 3.5 Polar Bandwidth Expansion -- Chapter 4: RF front-end (RFDAC) of the polar transmitter -- 4.1 Overview of the RF Front-End -- 4.2 Σ∆ Amplitude Modulation -- 4.2.1 Σ∆ Overview -- 4.2.2 Digital Design -- 4.2.3 Transfer Function and Spectrum -- 4.3 Digital Pre-PA -- 4.3.1 Overview of DPA Functionality -- 4.3.2 Analysis of DPA Quantization Noise -- 4.3.3 DPA Structural Design -- 4.4 DPA Transistor Mismatches -- 4.4.1 Amplitude Mismatch -- 4.4.2 Phase Mismatch -- 4.5 Key Categories of Mismatches and DEM -- 4.5.1 Key Categories -- 4.5.1.1 MSB (4x) transistor mismatch -- 4.5.1.2 Unit (1x) transistor mismatch -- 4.5.1.3 Systematic mismatch between 1x and 4x transistors -- 4.5.2 Simulation-Based Specifications -- 4.5.3 Dynamic Element Matching -- 4.5.4 Measurement Results -- 4.6 Clock Delay Alignment -- 4.6.1 Explanation of the Problem -- 4.6.2 Self-Calibration and Compensation Mechanism -- 4.7 Analysis of Parasitic Coupling -- 4.7.1 Possible Coupling Paths -- 4.7.2 A Novel Method of Characterizing Σ∆ Parasitic Coupling Using Idle-Tones -- 4.7.3 Relationship Between Idle Tones and Σ∆ Parasitic Coupling -- Chapter 5: Simulation and measurement results of the polar transmitter -- 5.1 Simulation Results -- 5.2 Measurement Results -- 5.2.1 Predistortion -- 5.2.2 Transmitter Close-In Performance -- 5.2.3 Transmitter Wideband Noise Performance -- 5.2.4 Performance Comparison -- 5.3 Conclusion -- Chapter 6: Idea of all-digital I/Q modulator -- 6.1 Concept of Digital I/Q Transmitter -- 6.2 Orthogonal Summing Operation of RFDAC -- 6.3 Conclusion -- Chapter 7: Orthogonal summation: A 2x3-bit all-digital I/Q RFDAC. , 7.1 Circuit Building Blocks of Digital I/Q Modulator -- 7.1.1 Digitally Controlled Oscillator -- 7.1.2 Divide-By-Two Circuit -- 7.1.3 25% Duty Cycle generator -- 7.1.4 Sign Bit Circuit -- 7.1.5 Implicit Mixer Circuit -- 7.1.6 2x3-Bit I/Q Switch Array Circuits -- 7.2 Measurement Results -- 7.3 Conclusion -- Chapter 8: Toward high-resolution RFDAC: The system design perspective -- 8.1 System Design Considerations -- 8.2 Conclusion -- Chapter 9: Differential I/Q DPA and power-combining network -- 9.1 Idealized Power Combiner With Different DRACs -- 9.2 A Differential I/Q Class-E-Based Power Combiner -- 9.3 Efficiency of I/Q RFDAC -- 9.4 Effect of Rise/Fall Time and Duty Cycle -- 9.5 Efficiency and Noise at Back-Off Levels -- 9.6 Design an Efficient Balun for Power Combiner -- 9.7 Conclusion -- Chapter 10: A wideband 2x13-bit all-digital I/Q RFDAC -- 10.1 Clock Input Transformer -- 10.2 High-Speed Rail-to-Rail Differential Dividers -- 10.3 Complementary Quadrature Sign Bit -- 10.4 Differential Quadrature 25% Duty Cycle Generator -- 10.5 Floorplanning of 2x 13-Bit DRAC -- 10.6 Thermometer Encoders of 3-to-7 and 4-to-15 -- 10.7 DRAC Unit Cell: MSB and LSB -- 10.8 MSB/LSB Selection Choices -- 10.9 Digital I/Q Calibration and DPD Techniques -- 10.9.1 IQ Image and Leakage Suppression -- 10.9.2 DPD Based on AM-AM and AM-PM Profiles -- 10.9.3 DPD Based on I/Q Code Mapping -- 10.9.4 DPD Required Memory and Time -- 10.9.5 DPD Effectiveness Against the Temperatureand Aging -- 10.9.6 Verification of DPD I/Q Code Mapping -- 10.10 Conclusion -- Chapter 11: Measurement results of the 2x13-bit I/Q RFDAC -- 11.1 Measurement Setup -- 11.2 Static Measurement Results -- 11.3 Dynamic Measurement Results -- 11.3.1 LO Leakage and IQ Image Suppression of I/Q RFDAC -- 11.3.2 The RFDAC's Linearity Using AM-AM/AM-PM Profiles. , 11.3.3 The RFDAC's Linearity Using Constellation Mapping -- 11.4 Conclusion -- Chapter 12: Future of RFDAC -- 12.1 The Outcome -- 12.2 Some Suggestions for Future Developments -- 12.3 Future Trends -- Appendix A: Appendix for the polar transmitter -- A.1 EDGE Modulation -- A.1.1 Symbol Mapping and Rotation -- A.1.2 Pulse Shaping Filter and Modulation -- A.2 RF System Specifications for the EDGE Transmitter -- A.3 Details of the Simulation Model -- A.3.1 Digital Amplitude and Phase Data Generation -- A.3.2 RF Front-End Model -- Appendix B: Appendix for I/Q RFDAC -- B.1 Universal Asynchronous Receiver/Transmitter -- B.2 Matching Network Equations -- B.3 AM-AM/AM-PM Relationship -- B.4 DPD Bandwidth Expansion -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 0-12-802263-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    edocfu_9960074075102883
    Umfang: 1 online resource (304 pages) : , illustrations
    Ausgabe: First edition.
    ISBN: 0-12-802503-4
    Inhalt: With the proliferation of wireless networks, there is a need for more compact, low-cost, power efficient transmitters that are capable of supporting the various communication standards, including Bluetooth, WLAN, GSM/EDGE, WCDMA and 4G of 3GPP cellular. This book describes a novel idea of RF digital-to-analog converters (RFDAC) and demonstrates how they can realize all-digital, fully-integrated RF transmitters that support all the current multi-mode and multi-band communication standards. With this book the reader will: Understand the challenges of realizing a universal CMOS RF transmitter Recognize the design issues and the advantages and disadvantages related to analog and digital transmitter architectures Master designing an RF transmitter from system level modeling techniques down to circuit designs and their related layout know-hows Grasp digital polar and I/Q calibration techniques as well as the digital predistortion approaches Learn how to generate appropriate digital I/Q baseband signals in order to apply them to the test chip and measure the RF-DAC performance. Highlights the benefits and implementation challenges of software-defined transmitters using CMOS technology Includes various types of analog and digital RF transmitter architectures for wireless applications Presents an all-digital polar RFDAC transmitter architecture and describes in detail its implementation Presents a new all-digital I/Q RFDAC transmitter architecture and its implementation Provides comprehensive design techniques from system level to circuit level Introduces several digital predistortion techniques which can be used in RF transmitters Describes the entire flow of system modeling, circuit simulation, layout techniques and the measurement process
    Anmerkung: Front Cover -- Radio-Frequency Digital-to-Analog Converters: Implementation in Nanoscale CMOS -- Copyright -- Contents -- Preface -- Acknowledgment -- Acronyms -- Chapter 1: Introduction -- 1.1 The Conventional RF Radio -- 1.2 Motivation -- 1.3 The Book Objectives -- 1.3.1 System Simulation of WCDMA Baseband Data -- 1.3.2 Some Important Figures-of-Merit in RF Transmitters -- 1.4 Analog Versus Digital RF Transmitters -- 1.5 Analog-Intensive RF Transmitters -- 1.6 Digitally Intensive RF Transmitters -- 1.7 New Paradigm of RF Design in Nanometer-Scale CMOS -- 1.8 All-Digital Polar Transmitter -- 1.9 All-Digital I/Q Transmitter -- 1.10 Conclusion -- 1.11 Book Outline -- Chapter 2: Digital polar transmitter architecture -- 2.1 Introduction to Narrowband Polar Transmitters -- 2.1.1 Motivation -- 2.1.1.1 Small-signal polar transmitter -- 2.1.1.2 Motivation for the digitally intensive amplitude path -- 2.1.2 Contrast With Conventional Analog Approaches -- 2.2 Overview of the RFDAC-Based Polar Transmitter Architecture -- 2.2.1 Overview of the DPA -- 2.2.2 DCO Operating Frequency and CKV Clock -- 2.3 Details of Phase Modulation -- 2.4 Design Challenges for the Small-Signal Polar Transmitter -- 2.4.1 DCO Phase Noise -- 2.4.2 DCO Pulling and Pushing -- 2.4.3 VGA/DPA Nonlinearity -- 2.4.4 Amplitude-Phase Path Delay Mismatch -- 2.4.5 Amplitude-Phase Path Transfer Function Mismatch -- 2.4.6 Amplitude Path DC Offset -- 2.4.7 Amplitude Path Dynamic Range Limitations -- 2.4.8 Amplitude Path DAC Mismatches -- 2.4.9 Additional Distortions in the DPA (DAC/Mixer) -- Chapter 3: Digital baseband of the polar transmitter -- 3.1 Overview of the TX Digital Baseband -- 3.1.1 Pulse Shaping Filter -- 3.1.2 Resampler -- 3.1.2.1 Need for a resampler -- 3.1.2.2 Implementation -- 3.1.3 CORDIC -- 3.2 Predistortion Module -- 3.2.1 Overview -- 3.2.2 Principle of Operation. , 3.2.2.1 Adaptive interpolation -- 3.2.2.2 Dynamic LUT inversion -- 3.2.3 Analysis of the Quantization Effects -- 3.3 Predistortion Self-Calibration -- 3.3.1 Effect of Temperature Variations on Predistortion -- 3.4 Interpolative Filter -- 3.5 Polar Bandwidth Expansion -- Chapter 4: RF front-end (RFDAC) of the polar transmitter -- 4.1 Overview of the RF Front-End -- 4.2 Σ∆ Amplitude Modulation -- 4.2.1 Σ∆ Overview -- 4.2.2 Digital Design -- 4.2.3 Transfer Function and Spectrum -- 4.3 Digital Pre-PA -- 4.3.1 Overview of DPA Functionality -- 4.3.2 Analysis of DPA Quantization Noise -- 4.3.3 DPA Structural Design -- 4.4 DPA Transistor Mismatches -- 4.4.1 Amplitude Mismatch -- 4.4.2 Phase Mismatch -- 4.5 Key Categories of Mismatches and DEM -- 4.5.1 Key Categories -- 4.5.1.1 MSB (4x) transistor mismatch -- 4.5.1.2 Unit (1x) transistor mismatch -- 4.5.1.3 Systematic mismatch between 1x and 4x transistors -- 4.5.2 Simulation-Based Specifications -- 4.5.3 Dynamic Element Matching -- 4.5.4 Measurement Results -- 4.6 Clock Delay Alignment -- 4.6.1 Explanation of the Problem -- 4.6.2 Self-Calibration and Compensation Mechanism -- 4.7 Analysis of Parasitic Coupling -- 4.7.1 Possible Coupling Paths -- 4.7.2 A Novel Method of Characterizing Σ∆ Parasitic Coupling Using Idle-Tones -- 4.7.3 Relationship Between Idle Tones and Σ∆ Parasitic Coupling -- Chapter 5: Simulation and measurement results of the polar transmitter -- 5.1 Simulation Results -- 5.2 Measurement Results -- 5.2.1 Predistortion -- 5.2.2 Transmitter Close-In Performance -- 5.2.3 Transmitter Wideband Noise Performance -- 5.2.4 Performance Comparison -- 5.3 Conclusion -- Chapter 6: Idea of all-digital I/Q modulator -- 6.1 Concept of Digital I/Q Transmitter -- 6.2 Orthogonal Summing Operation of RFDAC -- 6.3 Conclusion -- Chapter 7: Orthogonal summation: A 2x3-bit all-digital I/Q RFDAC. , 7.1 Circuit Building Blocks of Digital I/Q Modulator -- 7.1.1 Digitally Controlled Oscillator -- 7.1.2 Divide-By-Two Circuit -- 7.1.3 25% Duty Cycle generator -- 7.1.4 Sign Bit Circuit -- 7.1.5 Implicit Mixer Circuit -- 7.1.6 2x3-Bit I/Q Switch Array Circuits -- 7.2 Measurement Results -- 7.3 Conclusion -- Chapter 8: Toward high-resolution RFDAC: The system design perspective -- 8.1 System Design Considerations -- 8.2 Conclusion -- Chapter 9: Differential I/Q DPA and power-combining network -- 9.1 Idealized Power Combiner With Different DRACs -- 9.2 A Differential I/Q Class-E-Based Power Combiner -- 9.3 Efficiency of I/Q RFDAC -- 9.4 Effect of Rise/Fall Time and Duty Cycle -- 9.5 Efficiency and Noise at Back-Off Levels -- 9.6 Design an Efficient Balun for Power Combiner -- 9.7 Conclusion -- Chapter 10: A wideband 2x13-bit all-digital I/Q RFDAC -- 10.1 Clock Input Transformer -- 10.2 High-Speed Rail-to-Rail Differential Dividers -- 10.3 Complementary Quadrature Sign Bit -- 10.4 Differential Quadrature 25% Duty Cycle Generator -- 10.5 Floorplanning of 2x 13-Bit DRAC -- 10.6 Thermometer Encoders of 3-to-7 and 4-to-15 -- 10.7 DRAC Unit Cell: MSB and LSB -- 10.8 MSB/LSB Selection Choices -- 10.9 Digital I/Q Calibration and DPD Techniques -- 10.9.1 IQ Image and Leakage Suppression -- 10.9.2 DPD Based on AM-AM and AM-PM Profiles -- 10.9.3 DPD Based on I/Q Code Mapping -- 10.9.4 DPD Required Memory and Time -- 10.9.5 DPD Effectiveness Against the Temperatureand Aging -- 10.9.6 Verification of DPD I/Q Code Mapping -- 10.10 Conclusion -- Chapter 11: Measurement results of the 2x13-bit I/Q RFDAC -- 11.1 Measurement Setup -- 11.2 Static Measurement Results -- 11.3 Dynamic Measurement Results -- 11.3.1 LO Leakage and IQ Image Suppression of I/Q RFDAC -- 11.3.2 The RFDAC's Linearity Using AM-AM/AM-PM Profiles. , 11.3.3 The RFDAC's Linearity Using Constellation Mapping -- 11.4 Conclusion -- Chapter 12: Future of RFDAC -- 12.1 The Outcome -- 12.2 Some Suggestions for Future Developments -- 12.3 Future Trends -- Appendix A: Appendix for the polar transmitter -- A.1 EDGE Modulation -- A.1.1 Symbol Mapping and Rotation -- A.1.2 Pulse Shaping Filter and Modulation -- A.2 RF System Specifications for the EDGE Transmitter -- A.3 Details of the Simulation Model -- A.3.1 Digital Amplitude and Phase Data Generation -- A.3.2 RF Front-End Model -- Appendix B: Appendix for I/Q RFDAC -- B.1 Universal Asynchronous Receiver/Transmitter -- B.2 Matching Network Equations -- B.3 AM-AM/AM-PM Relationship -- B.4 DPD Bandwidth Expansion -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 0-12-802263-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    b3kat_BV045232870
    Umfang: xvi, 286 Seiten , Illustrationen, Diagramme
    ISBN: 9780128022634
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780128022634
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 0-12-802503-4
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    Schlagwort(e): Digital-Analog-Umsetzer ; Radiofrequenzbereich ; CMOS ; Nanometerbereich
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0192802534?
Meinten Sie 0412802503?
Meinten Sie 0120885034?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz