UID:
almafu_9960074026202883
Umfang:
1 online resource (244 p.)
ISBN:
9780128028049
,
0128028041
Anmerkung:
Description based upon print version of record.
,
Front Cover -- Mushroom Biotechnology -- Copyright Page -- Dedication -- Contents -- Editor Biography -- List of Contributors -- Foreword -- Preface -- 1 Biotechnology of Mushroom Growth Through Submerged Cultivation -- 1.1 Introduction -- 1.2 The Concept of SCM -- 1.3 Methods and Techniques used for SCM -- 1.4 Biotechnology for Submerged Cultivation of Pleurotus ostreatus and Lentinula edodes -- 1.5 Physical and Chemical Factors That Influence the SCM -- 1.5.1 Chemical Factors -- 1.5.1.1 Carbon sources -- 1.5.1.2 Nitrogen sources -- 1.5.1.3 pH index -- 1.5.1.4 Oxygen intake -- 1.5.2 Physical Factors That Influence the SCM -- 1.5.2.1 Temperature -- 1.5.2.2 Fragmentation degree of cultivation substrates -- 1.5.2.3 Stirring rate -- 1.6 The Biological Factors That Influence the SCM -- 1.7 New Biotechnology for Submerged Co-Cultivation of Mushroom Species -- 1.8 Concluding Remarks -- References -- 2 Biotechnological Recycling of Fruit Tree Wastes by Solid-State Cultivation of Mushrooms -- 2.1 Introduction -- 2.2 The Solid-State Cultivation of Mushrooms (SSCM) on Lignocellulosic Wastes of Fruit Trees -- 2.2.1 Preparation of Substrates for SSCM -- 2.2.2 Main Stages of SSCM -- 2.2.3 Chemical Analysis of the Collected Mushrooms -- 2.3 Conclusions -- Acknowledgments -- References -- 3 Controlled Cultivation of Mushrooms on Winery and Vineyard Wastes -- 3.1 Introduction -- 3.2 Solid-State Cultivation of Mushrooms (SSCM) on Winery and Vineyard Wastes -- 3.3 Submerged Cultivation of Mushrooms (SCM) in Liquid Media Containing Winery Wastes -- 3.4 Conclusions -- References -- 4 Virtual Robotic Prototype for Safe and Efficient Cultivation of Mushrooms -- 4.1 Introduction -- 4.2 Conventional Technologies Used in Mushroom Cultivation -- 4.3 Conceptual Model of Robotic Cultivation and Integrated Processing of Mushrooms.
,
4.4 Modular Robotic Prototype for Continuous Cultivation and Integrated Processing of Mushrooms -- 4.4.1 General Structure of Modular Robotic System for Growing Mushrooms -- 4.4.2 Specific Technological Operations of Modular Robotic Prototype -- 4.4.3 The Robot of Inoculation -- 4.4.4 The Robotic Harvesting Cell -- 4.5 Conclusions -- References -- 5 Growing Agaricus bisporus as a Contribution to Sustainable Agricultural Development -- 5.1 Introduction -- 5.2 The Improvement of Agro-Waste Valorization -- 5.2.1 The Use of Local Resources -- 5.2.2 From Outdoor to Indoor Composting -- 5.2.3 Reuse of the Same Compost Several Times -- 5.2.4 A Cultivation Substrate Without Composting? -- 5.3 The Preservation and Management of Biological Diversity -- 5.3.1 The Loss of Genetic Diversity in Cultivated Lines -- 5.3.2 The Native Reservoir of Biodiversity -- 5.3.3 Genotypic and Phenotypic Richness of Germplasms -- 5.4 Genetic Progress for Sustainable Growing of Agaricus bisporus -- 5.4.1 Generating Variability by Outcrossing -- 5.4.2 Modern Genetics Applied to A. bisporus -- 5.4.3 The Selection of Strains Able to Fruit at High Temperature -- 5.4.4 Selection of Strains with Health-Promoting Compounds and Low Safety Risk -- 5.4.5 Valorization of Genetic Progress for Sustainable Growing of Agaricus bisporus -- 5.5 Conclusions -- References -- 6 New Prospects in Pathogen Control of Button Mushroom Cultures -- 6.1 Introduction -- 6.2 Major Pathogens Affecting Agaricus bisporus and Their Prophylaxis -- 6.2.1 Antagonists of A. bisporus: Weed Molds and Trichoderma spp. -- 6.2.2 Dry Bubble Disease -- 6.2.3 The Bacterial Brown Blotch Pathogens -- 6.3 Strains of Agaricus bisporus Resistant to Pathogens -- 6.3.1 Genetic Resources for Resistance to Mushroom Pathogens -- 6.3.1.1 Resistance to Trichoderma aggressivum -- 6.3.1.2 Resistance to Lecanicillium fungicola.
,
6.3.1.3 Resistance to Pseudomonas tolaasii -- 6.3.2 Breeding for Resistance to Pathogens -- 6.4 Biological Control Agents -- 6.4.1 Biocontrol of Trichoderma aggressivum with Bacteria -- 6.4.2 Biocontrol of Pseudomonas tolaasii with Phages and Antagonistic Bacteria -- 6.4.3 No Biocontrol of Lecanicillium fungicola -- 6.5 Use of Environmentally Friendly Biomolecules -- 6.5.1 Essential Oils -- 6.5.2 Compost Tea -- 6.5.3 White Line-Inducing Principle -- 6.6 Conclusions -- References -- 7 Sclerotium-Forming Mushrooms as an Emerging Source of Medicinals: Current Perspectives -- 7.1 Introduction -- 7.2 The Importance of Mushroom Sclerotia -- 7.2.1 Food -- 7.2.2 Folk Medicine -- 7.2.3 Bioactive Components from SFM -- 7.2.3.1 Low-molecular-weight compounds -- 7.2.3.2 High-molecular-weight compounds -- 7.3 Scientific Validation of the Medicinal Properties of SFM -- 7.3.1 Antitumor Activity -- 7.3.2 Immunomodulatory Activity -- 7.3.3 Antioxidative Activity -- 7.3.4 Anti-Inflammatory Activity -- 7.3.5 Antimicrobial Activity -- 7.3.6 Antihypertensive Activity and Related Cardiovascular Complications -- 7.3.7 Antidiabetic Activity -- 7.3.8 Diuretic Activity -- 7.3.9 Neuritogenic Activity -- 7.4 Perspectives on Mycelial Biomass as a Potential Substitute for Sclerotia and Fruiting Bodies -- 7.4.1 Cultivation -- 7.4.2 Chemical Constituents -- 7.4.3 Comparative Biological Activities -- 7.5 Future Perspectives -- 7.6 Conclusions -- Acknowledgment -- References -- 8 Medicinal Mushrooms with Anti-Phytopathogenic and Insecticidal Properties -- 8.1 Introduction -- 8.2 Antibacterial Metabolites -- 8.3 Antifungal and Herbicidal Metabolites -- 8.4 Antiviral Metabolites -- 8.5 Insecticidal and Nematocidal Metabolites -- 8.6 Conclusions -- References -- 9 Cultivation of Medicinal Fungi in Bioreactors -- 9.1 Introduction -- 9.2 Cultivation Technologies.
,
9.2.1 Overview of Cultivation Technologies -- 9.2.2 Production of Biomass in Bioreactors -- 9.2.3 Submerged Bioprocessing -- 9.2.4 Solid-State Bioprocessing -- 9.3 Cultivation of Medicinal Mushrooms in Bioreactors -- 9.3.1 Submerged Cultivation of G. lucidum -- 9.3.1.1 Inoculum preparation -- 9.3.1.2 The effect of medium initial pH -- 9.3.1.3 The influence of aeration and agitation -- 9.3.1.4 The influence of substrate composition -- 9.3.1.5 Influences of carbon and nitrogen sources, and C/N ratio -- 9.3.1.6 The effects of nitrogen sources and concentrations -- 9.3.1.7 The influence of macro- and microelements -- 9.3.1.8 The effects of plant oils and fatty acids -- 9.3.1.9 The effect of polymer additives -- 9.3.1.10 Ganoderma lucidum cultivation in an STB -- 9.3.1.11 Ganoderma lucidum cultivation in airlift bioreactor -- 9.3.2 Solid-State Cultivation of G. lucidum -- 9.3.2.1 The influence of substrate composition -- 9.3.3 Submerged Cultivation of G. frondosa -- 9.3.3.1 Inoculum -- 9.3.3.2 The effect of initial pH -- 9.3.3.3 The effects of carbon and nitrogen sources -- 9.3.3.4 The effects of plant oils and surfactants -- 9.3.3.5 The effects of oxygen concentration -- 9.3.3.6 Grifola frondosa cultivation in an STB -- 9.3.3.7 Grifola frondosa cultivation in airlift bioreactor -- 9.3.4 Solid-State Cultivation of G. frondosa -- 9.3.4.1 Substrates -- 9.3.5 Cultivation of T. versicolor -- 9.3.5.1 Submerged cultivation of T. versicolor -- 9.3.5.2 The effects of carbon sources on biomass and EPS -- 9.3.5.3 The effects of nitrogen and amino acid sources on biomass and EPS -- 9.3.6 Solid-State Cultivation of T. versicolor -- 9.3.7 Submerged Cultivation of H. erinaceus -- 9.3.8 Solid-State Cultivation of H. erinaceus -- 9.3.9 Submerged Cultivation of C. militaris -- 9.3.10 Solid-State Cultivation of C. militaris.
,
9.3.11 Cultivation of Other Medicinal Mushroom Species in Bioreactors -- 9.4 Conclusions -- References -- 10 Use of Aspergillus niger Extracts Obtained by Solid-State Fermentation -- 10.1 Agro-Food Industrial Wastes as Raw Materials -- 10.2 Lignocellulosic Composition of Agroindustrial Wastes -- 10.3 Enzymes Involved in Lignocellulose Degradation -- 10.4 Fungal SSF -- 10.5 Aspergillus niger for the Production of Xylanases -- 10.6 Corn Cob as a Carbon Source for Xylanase Production by A. niger -- 10.7 Industrial Application of Fungal Xylanases -- 10.8 Corn Cob as Substrate for the Enzymatic Production of Xylooligosaccharides and Xylose -- 10.9 Conclusions -- References -- 11 Identification and Application of Volvariella volvacea Mating Type Genes to Mushroom Breeding -- 11.1 Introduction -- 11.2 The General Features of the V. volvacea Genome -- 11.3 Mating Type Loci and Mating Type Genes of V. volvacea -- 11.4 Setting the Molecular Marker-Assisted Breeding Techniques of V. volvacea -- 11.5 The Separation of Single Spore Isolates -- 11.6 Cloning the Mating Type Gene -- 11.7 Designing the PCR Primers for Amplifying the Mating Type Genes -- 11.8 The Marker-Assisted Identification of Homokaryons -- 11.9 Cross-Breeding Between Pairs of Homokaryons -- 11.10 Marker-Assisted Identification of Hybrids -- 11.11 Cultivation Experiments -- 11.12 Marker-Assisted Identification of Hybrid Sporophores -- References -- 12 Biotechnological Use of Fungi for the Degradation of Recalcitrant Agro-pesticides -- 12.1 Introduction -- 12.2 Bioremediation of Xenobiotics -- 12.2.1 Phytoremediation -- 12.2.2 Bioremediation by Fungi -- 12.2.2.1 Endosulfan biodegradation by fungi -- 12.2.2.2 Chlorothalonil biodegradation by fungi -- 12.2.2.3 Biodegradation of paraquat -- 12.3 Perspectives -- References -- Index -- Back Cover.
,
English
Weitere Ausg.:
ISBN 9780128027943
Weitere Ausg.:
ISBN 0128027940
Sprache:
Englisch
Bookmarklink