Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Keywords
Access
  • 1
    UID:
    almahu_9948025582802882
    Format: 1 online resource (496 pages)
    ISBN: 0-12-812816-X
    Note: Front Cover -- Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses -- Copyright -- Contents -- Contributors -- Chapter 1: Reverse Osmosis Membrane Separation Technology -- 1.1. Introduction of Reverse Osmosis -- 1.1.1. Historic Development of RO -- 1.1.2. Basic Properties of RO Membrane -- 1.2. RO Membrane Fabrication -- 1.2.1. Cellulose Acetate Membrane -- 1.2.2. TFC Polyamide Membrane -- 1.2.3. Membrane With a Polyelectrolyte Multilayer Film -- 1.2.4. Recent Advances in Membranes -- 1.2.4.1. Mixed Matrix Membranes -- 1.2.4.2. Biomimetic Membranes -- 1.3. Membrane Properties and Characterizations -- 1.3.1. Membrane Properties -- 1.3.1.1. Water Permeability and Solute Permeability -- 1.3.1.2. Hydrophilicity -- 1.3.1.3. Surface Roughness -- 1.3.1.4. Surface Charge -- 1.3.1.5. Stability -- 1.3.2. Membrane Characterizations -- 1.3.2.1. Performance Tests -- 1.3.2.2. Microscopic Methods -- 1.3.2.3. Spectroscopic Methods -- 1.3.2.4. Other Characterization Techniques -- 1.4. Membrane Modules and Process Operation -- 1.4.1. Membrane Modules -- 1.4.1.1. Spiral Wound Module (SWM) -- 1.4.1.2. Hollow Fiber Module -- 1.4.1.3. Plate-and-Frame Module -- 1.4.1.4. Tubular Module -- 1.4.2. Process Operation -- 1.5. Concentration Polarization -- 1.6. Membrane Fouling and Control -- 1.6.1. Factors Affecting Membrane Fouling -- 1.6.1.1. Membrane Properties -- 1.6.1.2. Feed Water Composition -- 1.6.1.3. Hydrodynamic Conditions -- 1.6.2. Fouling Mitigation -- 1.7. RO Applications -- 1.7.1. Desalination and Water Reclamation -- 1.7.1.1. Desalination -- 1.7.1.2. Water Reclamation/Wastewater Treatment -- 1.7.2. Ultrapure Water Production -- 1.7.3. Solute Concentration -- 1.7.3.1. Concentration of Juices and Dairy Products -- 1.7.3.2. Dealcoholization of Fermented Beverage -- 1.7.4. Organic Solvent Separation. , 1.8. Conclusions -- References -- Further Reading -- Chapter 2: Materials and Engineering Design of Interfacial Polymerized Thin Film Composite Nanofiltration Membrane for In ... -- 2.1. Introduction -- 2.2. Membrane Characteristics and Its Performance -- 2.3. Material Selection -- 2.3.1. Polyamide -- 2.3.2. Polyester -- 2.3.3. Polyamine -- 2.3.4. Polyurethane -- 2.4. Control of Interfacial Polymerization -- 2.4.1. Monomer -- 2.4.2. Reaction Conditions -- 2.4.3. Support Layer -- 2.5. Conventional Applications of TFC Nanofiltration -- 2.5.1. Water Softening -- 2.5.2. Wastewater and Water Treatment -- 2.5.3. Food Processing -- 2.6. Functionalized TFC Nanofiltration and Its Applications -- 2.6.1. Positively Charged Thin Film Composite Membrane -- 2.6.1.1. Poly (Ethylene Imine) -- 2.6.1.2. Poly(vinylamine) -- 2.6.1.3. Poly (amidoamine) -- 2.6.1.4. Poly (dopamine) -- 2.6.2. Chemical Resistance Nanofiltration -- 2.6.3. Thin Film Nanocomposite Membrane (TFN) -- 2.7. Separation Principles and Solute Transportation -- 2.7.1. Driving Force of NF Process -- 2.7.2. Membrane Transport Model -- 2.7.2.1. Spiegler-Kedem Model -- 2.7.2.2. Solution-Diffusion Model -- 2.7.2.3. Kimura-Sourirajan Model -- 2.7.2.4. Maxwell-Stefan Model -- 2.7.2.5. Extended Nernst-Planck (ENP) Model -- 2.7.2.5.1. Teorell-Meyer-Siever Model (TMS) -- 2.7.2.5.2. Donnan Steric Pore Model (DSPM) -- 2.7.2.5.3. Donnan Steric Pore Model (DSPM&DE) -- 2.7.2.6. Space Charge Model (SC) -- 2.8. Conclusion -- Acknowledgment -- References -- Chapter 3: Recent Progresses of Ultrafiltration (UF) Membranes and Processes in Water Treatment -- 3.1. Introduction -- 3.2. Recent Progresses in UF Membrane Development -- 3.2.1. Material Selection for Polymeric UF Membrane -- 3.2.1.1. Polymer -- 3.2.1.2. Nanoparticles -- 3.3. Polymeric UF Membrane Configurations -- 3.3.1. Flat Sheet UF Membrane. , 3.3.2. Hollow Fibers UF Membrane -- 3.3.3. Nanofibrous UF Membrane -- 3.3.4. Mixed Matrix Membranes -- 3.4. Fouling Mitigation -- 3.4.1. Fouling Type and Methods to Control Fouling -- 3.4.2. Cleaning Method -- 3.5. Surface Modification -- 3.6. Recent Progresses in UF Membrane and UF Membrane Processes -- 3.6.1. Antibacterial Membrane -- 3.6.2. Adsorptive Membrane -- 3.6.3. UF Photocatalytic Membranes -- 3.7. Summary -- Acknowledgments -- References -- Further Reading -- Chapter 4: Microfiltration Membranes -- 4.1. Introduction -- 4.2. Modes and Modules -- 4.2.1. Modes -- 4.2.1.1. Batch -- 4.2.1.2. Semi-Batch -- 4.2.1.3. Continuous -- 4.2.2. Modules -- 4.2.2.1. Plate and Frame -- 4.2.2.2. Spiral Wound -- 4.2.2.3. Tubular -- 4.2.2.4. Perforated Block -- 4.2.2.5. Rotating Disk -- 4.3. Fouling and Its Corrective Measures -- 4.3.1. Evaluation of Membrane Fouling -- 4.3.2. Methods to Abstain Fouling -- 4.3.2.1. Increase in the Hydrophilicity of the Membranes by Blending Method -- 4.3.2.2. Antifouling Membranes by Surface Modification -- 4.3.2.2.1. Physical Modification -- 4.3.2.2.2. Chemical Modification -- 4.4. Preparation -- 4.4.1. Polymeric Membranes -- 4.4.1.1. Stretching -- 4.4.1.2. Track-Etching -- 4.4.1.3. Sintering -- 4.4.1.4. Phase Inversion -- 4.4.1.5. Solution Coating -- 4.4.2. Ceramic Membranes -- 4.4.2.1. Paste Method -- 4.4.2.2. Uni-Axial Method -- 4.4.2.3. Other Methods -- 4.4.2.3.1. Slip Casting -- 4.4.2.3.2. Tape Casting -- 4.4.2.3.3. Dip Coating -- 4.4.2.3.4. Extrusion -- 4.5. Characterization -- 4.5.1. Membrane Morphological Analysis -- 4.5.1.1. Scanning Electron Microscopy -- 4.5.1.2. Membrane Pore Size and Pore Size Distribution -- 4.5.2. Membrane Structural and Functional Analysis -- 4.5.2.1. Thermogravimetric Analysis -- 4.5.2.2. X-Ray Diffraction Analysis -- 4.5.2.3. Fourier Transform Infrared Analysis. , 4.6. Ceramic Membrane Applications -- 4.6.1. Oily Wastewater Treatment -- 4.6.2. Juice Clarification -- 4.6.3. Heavy Metal Removal -- 4.6.4. Protein Separation -- 4.7. Cost Estimation -- References -- Chapter 5: Inorganic Membranes for Gas Separations -- 5.1. Introduction -- 5.2. Common Considerations and General Principles -- 5.2.1. Membrane Material and Microstructure -- 5.2.2. Membrane Formation -- 5.2.2.1. Dense Ceramic Membranes -- 5.2.2.2. Dense Metallic Membranes -- 5.2.2.3. Microporous Membranes -- 5.2.3. Gas Separation Mechanism -- 5.2.3.1. Dense Ceramic Membranes -- 5.2.3.2. Dense Metallic Membranes -- 5.2.3.3. Microporous Membranes -- 5.2.4. Performance Indicators -- 5.2.4.1. Permeation -- 5.2.4.2. Selectivity -- 5.3. Dense Ceramic Membranes -- 5.3.1. Mixed Ionic-Electronic Conducting (MIEC) Ceramics -- 5.3.1.1. Material Structure and Basic Concepts -- 5.3.1.2. Membrane Transport -- 5.3.1.3. Membrane Configuration, Microstructure, and Fabrication -- 5.3.1.4. MICE Membranes Based on Material Families -- 5.3.2. Mixed Protonic-Electronic Conducting Ceramics -- 5.3.2.1. Hydrogen Transport Mechanisms -- 5.3.2.2. Mixed Protonic-Electronic Conducting Materials -- 5.3.2.3. Preparation of Mixed Protonic-Electronic Conducting Membranes -- 5.4. Dense Metallic Membranes -- 5.4.1. Separation Mechanism -- 5.4.2. Pd-Based Membranes for Hydrogen Separation -- 5.4.2.1. Chemical Stabilities -- 5.4.2.2. Pd-Based Alloys -- 5.4.3. Formation of Pd-Based Membrane -- 5.4.3.1. The Roles of the Membrane Support -- 5.4.3.2. Membrane Formation Methods -- 5.5. Microporous Membranes -- 5.5.1. Silica Membranes -- 5.5.1.1. Sol-Gel Methods -- 5.5.1.2. Applying Sol Onto a Porous Support -- 5.5.2. Zeolite Membranes -- 5.5.2.1. Fabrication Methods -- 5.5.2.1.1. In Situ Hydrothermal Method -- 5.5.2.1.2. Secondary Growth -- 5.5.2.1.3. Phase Transport Method. , 5.5.2.2. Modifications of Zeolite Membranes -- 5.5.3. Carbon Membrane -- 5.5.3.1. Precursor Polymeric Materials -- 5.5.3.2. Converting Conditions -- 5.5.3.3. Membrane Configurations -- 5.5.4. Gas Transport Through Microporous Membranes -- 5.6. Summary -- References -- Further Reading -- Chapter 6: Pervaporation and Vapor Separation -- 6.1. Introduction -- 6.2. Theory Background -- 6.2.1. Transport Mechanism -- 6.2.2. Evaluation of Pervaporation and Vapor Separation Membranes -- 6.3. Fabrication of Pervaporation and Vapor Separation Membranes -- 6.3.1. Solution Casting -- 6.3.2. Hollow Fiber Spinning -- 6.3.3. Typical Methods for Fabricating Composite Membranes -- 6.3.3.1. Solution Coating -- 6.3.3.2. Interfacial Polymerization -- 6.3.3.3. Layer-by-Layer Technology -- 6.3.4. Physicochemical Modifications -- 6.4. Pervaporation Membranes -- 6.4.1. Dehydration of Organics -- 6.4.1.1. Highly Hydrophilic Polymeric Membranes -- 6.4.1.2. Polyimide Membranes -- 6.4.1.3. Membranes From Other Aromatic Polymers -- 6.4.1.4. Polyamide Membranes -- 6.4.1.5. Membranes From Perfluoro Polymers -- 6.4.1.6. Mixed Matrix Membranes (MMMs) -- 6.4.2. Removal of Organics From Aqueous Solutions -- 6.4.2.1. Hydrophobic Polymeric Membranes -- 6.4.2.2. MMMs -- 6.4.3. Organic/Organic Separation Membranes -- 6.4.3.1. Polymeric Membranes -- 6.4.3.2. MMMs -- 6.5. Vapor Permeation -- 6.6. Useful Characterization Methods for Pervaporation and Vapor Separation Membranes -- 6.7. Conclusions and Perspective -- References -- Chapter 7: Pervaporation and Hybrid Vacuum Membrane Distillation Technology and Applications -- 7.1. Introduction -- 7.2. Vacuum Membrane Distillation and Hybrid Pervaporation Membranes -- 7.3. AZEO-SEP™, VOC-SEP™, and AQUA-SEP™: Products of Petro Sep -- 7.4. Solvent Recovery and Wastewater Treatment. , 7.5. Recovery of Nitrates, Solvents, and Water From Wastewater of Gold and Silver Plating Industry by Using Hybrid VOC SE ...
    Additional Edition: ISBN 0-12-812815-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV045383461
    Format: 1 Online-Ressource (xi, 481 Seiten)
    ISBN: 9780128128169 , 012812816X
    Series Statement: Handbooks in separation science
    Note: Includes index
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-812815-2
    Language: English
    Keywords: Membranfiltration
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edocfu_9961089663802883
    Format: 1 online resource (496 pages)
    ISBN: 0-12-812816-X
    Note: Front Cover -- Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses -- Copyright -- Contents -- Contributors -- Chapter 1: Reverse Osmosis Membrane Separation Technology -- 1.1. Introduction of Reverse Osmosis -- 1.1.1. Historic Development of RO -- 1.1.2. Basic Properties of RO Membrane -- 1.2. RO Membrane Fabrication -- 1.2.1. Cellulose Acetate Membrane -- 1.2.2. TFC Polyamide Membrane -- 1.2.3. Membrane With a Polyelectrolyte Multilayer Film -- 1.2.4. Recent Advances in Membranes -- 1.2.4.1. Mixed Matrix Membranes -- 1.2.4.2. Biomimetic Membranes -- 1.3. Membrane Properties and Characterizations -- 1.3.1. Membrane Properties -- 1.3.1.1. Water Permeability and Solute Permeability -- 1.3.1.2. Hydrophilicity -- 1.3.1.3. Surface Roughness -- 1.3.1.4. Surface Charge -- 1.3.1.5. Stability -- 1.3.2. Membrane Characterizations -- 1.3.2.1. Performance Tests -- 1.3.2.2. Microscopic Methods -- 1.3.2.3. Spectroscopic Methods -- 1.3.2.4. Other Characterization Techniques -- 1.4. Membrane Modules and Process Operation -- 1.4.1. Membrane Modules -- 1.4.1.1. Spiral Wound Module (SWM) -- 1.4.1.2. Hollow Fiber Module -- 1.4.1.3. Plate-and-Frame Module -- 1.4.1.4. Tubular Module -- 1.4.2. Process Operation -- 1.5. Concentration Polarization -- 1.6. Membrane Fouling and Control -- 1.6.1. Factors Affecting Membrane Fouling -- 1.6.1.1. Membrane Properties -- 1.6.1.2. Feed Water Composition -- 1.6.1.3. Hydrodynamic Conditions -- 1.6.2. Fouling Mitigation -- 1.7. RO Applications -- 1.7.1. Desalination and Water Reclamation -- 1.7.1.1. Desalination -- 1.7.1.2. Water Reclamation/Wastewater Treatment -- 1.7.2. Ultrapure Water Production -- 1.7.3. Solute Concentration -- 1.7.3.1. Concentration of Juices and Dairy Products -- 1.7.3.2. Dealcoholization of Fermented Beverage -- 1.7.4. Organic Solvent Separation. , 1.8. Conclusions -- References -- Further Reading -- Chapter 2: Materials and Engineering Design of Interfacial Polymerized Thin Film Composite Nanofiltration Membrane for In ... -- 2.1. Introduction -- 2.2. Membrane Characteristics and Its Performance -- 2.3. Material Selection -- 2.3.1. Polyamide -- 2.3.2. Polyester -- 2.3.3. Polyamine -- 2.3.4. Polyurethane -- 2.4. Control of Interfacial Polymerization -- 2.4.1. Monomer -- 2.4.2. Reaction Conditions -- 2.4.3. Support Layer -- 2.5. Conventional Applications of TFC Nanofiltration -- 2.5.1. Water Softening -- 2.5.2. Wastewater and Water Treatment -- 2.5.3. Food Processing -- 2.6. Functionalized TFC Nanofiltration and Its Applications -- 2.6.1. Positively Charged Thin Film Composite Membrane -- 2.6.1.1. Poly (Ethylene Imine) -- 2.6.1.2. Poly(vinylamine) -- 2.6.1.3. Poly (amidoamine) -- 2.6.1.4. Poly (dopamine) -- 2.6.2. Chemical Resistance Nanofiltration -- 2.6.3. Thin Film Nanocomposite Membrane (TFN) -- 2.7. Separation Principles and Solute Transportation -- 2.7.1. Driving Force of NF Process -- 2.7.2. Membrane Transport Model -- 2.7.2.1. Spiegler-Kedem Model -- 2.7.2.2. Solution-Diffusion Model -- 2.7.2.3. Kimura-Sourirajan Model -- 2.7.2.4. Maxwell-Stefan Model -- 2.7.2.5. Extended Nernst-Planck (ENP) Model -- 2.7.2.5.1. Teorell-Meyer-Siever Model (TMS) -- 2.7.2.5.2. Donnan Steric Pore Model (DSPM) -- 2.7.2.5.3. Donnan Steric Pore Model (DSPM&DE) -- 2.7.2.6. Space Charge Model (SC) -- 2.8. Conclusion -- Acknowledgment -- References -- Chapter 3: Recent Progresses of Ultrafiltration (UF) Membranes and Processes in Water Treatment -- 3.1. Introduction -- 3.2. Recent Progresses in UF Membrane Development -- 3.2.1. Material Selection for Polymeric UF Membrane -- 3.2.1.1. Polymer -- 3.2.1.2. Nanoparticles -- 3.3. Polymeric UF Membrane Configurations -- 3.3.1. Flat Sheet UF Membrane. , 3.3.2. Hollow Fibers UF Membrane -- 3.3.3. Nanofibrous UF Membrane -- 3.3.4. Mixed Matrix Membranes -- 3.4. Fouling Mitigation -- 3.4.1. Fouling Type and Methods to Control Fouling -- 3.4.2. Cleaning Method -- 3.5. Surface Modification -- 3.6. Recent Progresses in UF Membrane and UF Membrane Processes -- 3.6.1. Antibacterial Membrane -- 3.6.2. Adsorptive Membrane -- 3.6.3. UF Photocatalytic Membranes -- 3.7. Summary -- Acknowledgments -- References -- Further Reading -- Chapter 4: Microfiltration Membranes -- 4.1. Introduction -- 4.2. Modes and Modules -- 4.2.1. Modes -- 4.2.1.1. Batch -- 4.2.1.2. Semi-Batch -- 4.2.1.3. Continuous -- 4.2.2. Modules -- 4.2.2.1. Plate and Frame -- 4.2.2.2. Spiral Wound -- 4.2.2.3. Tubular -- 4.2.2.4. Perforated Block -- 4.2.2.5. Rotating Disk -- 4.3. Fouling and Its Corrective Measures -- 4.3.1. Evaluation of Membrane Fouling -- 4.3.2. Methods to Abstain Fouling -- 4.3.2.1. Increase in the Hydrophilicity of the Membranes by Blending Method -- 4.3.2.2. Antifouling Membranes by Surface Modification -- 4.3.2.2.1. Physical Modification -- 4.3.2.2.2. Chemical Modification -- 4.4. Preparation -- 4.4.1. Polymeric Membranes -- 4.4.1.1. Stretching -- 4.4.1.2. Track-Etching -- 4.4.1.3. Sintering -- 4.4.1.4. Phase Inversion -- 4.4.1.5. Solution Coating -- 4.4.2. Ceramic Membranes -- 4.4.2.1. Paste Method -- 4.4.2.2. Uni-Axial Method -- 4.4.2.3. Other Methods -- 4.4.2.3.1. Slip Casting -- 4.4.2.3.2. Tape Casting -- 4.4.2.3.3. Dip Coating -- 4.4.2.3.4. Extrusion -- 4.5. Characterization -- 4.5.1. Membrane Morphological Analysis -- 4.5.1.1. Scanning Electron Microscopy -- 4.5.1.2. Membrane Pore Size and Pore Size Distribution -- 4.5.2. Membrane Structural and Functional Analysis -- 4.5.2.1. Thermogravimetric Analysis -- 4.5.2.2. X-Ray Diffraction Analysis -- 4.5.2.3. Fourier Transform Infrared Analysis. , 4.6. Ceramic Membrane Applications -- 4.6.1. Oily Wastewater Treatment -- 4.6.2. Juice Clarification -- 4.6.3. Heavy Metal Removal -- 4.6.4. Protein Separation -- 4.7. Cost Estimation -- References -- Chapter 5: Inorganic Membranes for Gas Separations -- 5.1. Introduction -- 5.2. Common Considerations and General Principles -- 5.2.1. Membrane Material and Microstructure -- 5.2.2. Membrane Formation -- 5.2.2.1. Dense Ceramic Membranes -- 5.2.2.2. Dense Metallic Membranes -- 5.2.2.3. Microporous Membranes -- 5.2.3. Gas Separation Mechanism -- 5.2.3.1. Dense Ceramic Membranes -- 5.2.3.2. Dense Metallic Membranes -- 5.2.3.3. Microporous Membranes -- 5.2.4. Performance Indicators -- 5.2.4.1. Permeation -- 5.2.4.2. Selectivity -- 5.3. Dense Ceramic Membranes -- 5.3.1. Mixed Ionic-Electronic Conducting (MIEC) Ceramics -- 5.3.1.1. Material Structure and Basic Concepts -- 5.3.1.2. Membrane Transport -- 5.3.1.3. Membrane Configuration, Microstructure, and Fabrication -- 5.3.1.4. MICE Membranes Based on Material Families -- 5.3.2. Mixed Protonic-Electronic Conducting Ceramics -- 5.3.2.1. Hydrogen Transport Mechanisms -- 5.3.2.2. Mixed Protonic-Electronic Conducting Materials -- 5.3.2.3. Preparation of Mixed Protonic-Electronic Conducting Membranes -- 5.4. Dense Metallic Membranes -- 5.4.1. Separation Mechanism -- 5.4.2. Pd-Based Membranes for Hydrogen Separation -- 5.4.2.1. Chemical Stabilities -- 5.4.2.2. Pd-Based Alloys -- 5.4.3. Formation of Pd-Based Membrane -- 5.4.3.1. The Roles of the Membrane Support -- 5.4.3.2. Membrane Formation Methods -- 5.5. Microporous Membranes -- 5.5.1. Silica Membranes -- 5.5.1.1. Sol-Gel Methods -- 5.5.1.2. Applying Sol Onto a Porous Support -- 5.5.2. Zeolite Membranes -- 5.5.2.1. Fabrication Methods -- 5.5.2.1.1. In Situ Hydrothermal Method -- 5.5.2.1.2. Secondary Growth -- 5.5.2.1.3. Phase Transport Method. , 5.5.2.2. Modifications of Zeolite Membranes -- 5.5.3. Carbon Membrane -- 5.5.3.1. Precursor Polymeric Materials -- 5.5.3.2. Converting Conditions -- 5.5.3.3. Membrane Configurations -- 5.5.4. Gas Transport Through Microporous Membranes -- 5.6. Summary -- References -- Further Reading -- Chapter 6: Pervaporation and Vapor Separation -- 6.1. Introduction -- 6.2. Theory Background -- 6.2.1. Transport Mechanism -- 6.2.2. Evaluation of Pervaporation and Vapor Separation Membranes -- 6.3. Fabrication of Pervaporation and Vapor Separation Membranes -- 6.3.1. Solution Casting -- 6.3.2. Hollow Fiber Spinning -- 6.3.3. Typical Methods for Fabricating Composite Membranes -- 6.3.3.1. Solution Coating -- 6.3.3.2. Interfacial Polymerization -- 6.3.3.3. Layer-by-Layer Technology -- 6.3.4. Physicochemical Modifications -- 6.4. Pervaporation Membranes -- 6.4.1. Dehydration of Organics -- 6.4.1.1. Highly Hydrophilic Polymeric Membranes -- 6.4.1.2. Polyimide Membranes -- 6.4.1.3. Membranes From Other Aromatic Polymers -- 6.4.1.4. Polyamide Membranes -- 6.4.1.5. Membranes From Perfluoro Polymers -- 6.4.1.6. Mixed Matrix Membranes (MMMs) -- 6.4.2. Removal of Organics From Aqueous Solutions -- 6.4.2.1. Hydrophobic Polymeric Membranes -- 6.4.2.2. MMMs -- 6.4.3. Organic/Organic Separation Membranes -- 6.4.3.1. Polymeric Membranes -- 6.4.3.2. MMMs -- 6.5. Vapor Permeation -- 6.6. Useful Characterization Methods for Pervaporation and Vapor Separation Membranes -- 6.7. Conclusions and Perspective -- References -- Chapter 7: Pervaporation and Hybrid Vacuum Membrane Distillation Technology and Applications -- 7.1. Introduction -- 7.2. Vacuum Membrane Distillation and Hybrid Pervaporation Membranes -- 7.3. AZEO-SEP™, VOC-SEP™, and AQUA-SEP™: Products of Petro Sep -- 7.4. Solvent Recovery and Wastewater Treatment. , 7.5. Recovery of Nitrates, Solvents, and Water From Wastewater of Gold and Silver Plating Industry by Using Hybrid VOC SE ...
    Additional Edition: ISBN 0-12-812815-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edoccha_9961089663802883
    Format: 1 online resource (496 pages)
    ISBN: 0-12-812816-X
    Note: Front Cover -- Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses -- Copyright -- Contents -- Contributors -- Chapter 1: Reverse Osmosis Membrane Separation Technology -- 1.1. Introduction of Reverse Osmosis -- 1.1.1. Historic Development of RO -- 1.1.2. Basic Properties of RO Membrane -- 1.2. RO Membrane Fabrication -- 1.2.1. Cellulose Acetate Membrane -- 1.2.2. TFC Polyamide Membrane -- 1.2.3. Membrane With a Polyelectrolyte Multilayer Film -- 1.2.4. Recent Advances in Membranes -- 1.2.4.1. Mixed Matrix Membranes -- 1.2.4.2. Biomimetic Membranes -- 1.3. Membrane Properties and Characterizations -- 1.3.1. Membrane Properties -- 1.3.1.1. Water Permeability and Solute Permeability -- 1.3.1.2. Hydrophilicity -- 1.3.1.3. Surface Roughness -- 1.3.1.4. Surface Charge -- 1.3.1.5. Stability -- 1.3.2. Membrane Characterizations -- 1.3.2.1. Performance Tests -- 1.3.2.2. Microscopic Methods -- 1.3.2.3. Spectroscopic Methods -- 1.3.2.4. Other Characterization Techniques -- 1.4. Membrane Modules and Process Operation -- 1.4.1. Membrane Modules -- 1.4.1.1. Spiral Wound Module (SWM) -- 1.4.1.2. Hollow Fiber Module -- 1.4.1.3. Plate-and-Frame Module -- 1.4.1.4. Tubular Module -- 1.4.2. Process Operation -- 1.5. Concentration Polarization -- 1.6. Membrane Fouling and Control -- 1.6.1. Factors Affecting Membrane Fouling -- 1.6.1.1. Membrane Properties -- 1.6.1.2. Feed Water Composition -- 1.6.1.3. Hydrodynamic Conditions -- 1.6.2. Fouling Mitigation -- 1.7. RO Applications -- 1.7.1. Desalination and Water Reclamation -- 1.7.1.1. Desalination -- 1.7.1.2. Water Reclamation/Wastewater Treatment -- 1.7.2. Ultrapure Water Production -- 1.7.3. Solute Concentration -- 1.7.3.1. Concentration of Juices and Dairy Products -- 1.7.3.2. Dealcoholization of Fermented Beverage -- 1.7.4. Organic Solvent Separation. , 1.8. Conclusions -- References -- Further Reading -- Chapter 2: Materials and Engineering Design of Interfacial Polymerized Thin Film Composite Nanofiltration Membrane for In ... -- 2.1. Introduction -- 2.2. Membrane Characteristics and Its Performance -- 2.3. Material Selection -- 2.3.1. Polyamide -- 2.3.2. Polyester -- 2.3.3. Polyamine -- 2.3.4. Polyurethane -- 2.4. Control of Interfacial Polymerization -- 2.4.1. Monomer -- 2.4.2. Reaction Conditions -- 2.4.3. Support Layer -- 2.5. Conventional Applications of TFC Nanofiltration -- 2.5.1. Water Softening -- 2.5.2. Wastewater and Water Treatment -- 2.5.3. Food Processing -- 2.6. Functionalized TFC Nanofiltration and Its Applications -- 2.6.1. Positively Charged Thin Film Composite Membrane -- 2.6.1.1. Poly (Ethylene Imine) -- 2.6.1.2. Poly(vinylamine) -- 2.6.1.3. Poly (amidoamine) -- 2.6.1.4. Poly (dopamine) -- 2.6.2. Chemical Resistance Nanofiltration -- 2.6.3. Thin Film Nanocomposite Membrane (TFN) -- 2.7. Separation Principles and Solute Transportation -- 2.7.1. Driving Force of NF Process -- 2.7.2. Membrane Transport Model -- 2.7.2.1. Spiegler-Kedem Model -- 2.7.2.2. Solution-Diffusion Model -- 2.7.2.3. Kimura-Sourirajan Model -- 2.7.2.4. Maxwell-Stefan Model -- 2.7.2.5. Extended Nernst-Planck (ENP) Model -- 2.7.2.5.1. Teorell-Meyer-Siever Model (TMS) -- 2.7.2.5.2. Donnan Steric Pore Model (DSPM) -- 2.7.2.5.3. Donnan Steric Pore Model (DSPM&DE) -- 2.7.2.6. Space Charge Model (SC) -- 2.8. Conclusion -- Acknowledgment -- References -- Chapter 3: Recent Progresses of Ultrafiltration (UF) Membranes and Processes in Water Treatment -- 3.1. Introduction -- 3.2. Recent Progresses in UF Membrane Development -- 3.2.1. Material Selection for Polymeric UF Membrane -- 3.2.1.1. Polymer -- 3.2.1.2. Nanoparticles -- 3.3. Polymeric UF Membrane Configurations -- 3.3.1. Flat Sheet UF Membrane. , 3.3.2. Hollow Fibers UF Membrane -- 3.3.3. Nanofibrous UF Membrane -- 3.3.4. Mixed Matrix Membranes -- 3.4. Fouling Mitigation -- 3.4.1. Fouling Type and Methods to Control Fouling -- 3.4.2. Cleaning Method -- 3.5. Surface Modification -- 3.6. Recent Progresses in UF Membrane and UF Membrane Processes -- 3.6.1. Antibacterial Membrane -- 3.6.2. Adsorptive Membrane -- 3.6.3. UF Photocatalytic Membranes -- 3.7. Summary -- Acknowledgments -- References -- Further Reading -- Chapter 4: Microfiltration Membranes -- 4.1. Introduction -- 4.2. Modes and Modules -- 4.2.1. Modes -- 4.2.1.1. Batch -- 4.2.1.2. Semi-Batch -- 4.2.1.3. Continuous -- 4.2.2. Modules -- 4.2.2.1. Plate and Frame -- 4.2.2.2. Spiral Wound -- 4.2.2.3. Tubular -- 4.2.2.4. Perforated Block -- 4.2.2.5. Rotating Disk -- 4.3. Fouling and Its Corrective Measures -- 4.3.1. Evaluation of Membrane Fouling -- 4.3.2. Methods to Abstain Fouling -- 4.3.2.1. Increase in the Hydrophilicity of the Membranes by Blending Method -- 4.3.2.2. Antifouling Membranes by Surface Modification -- 4.3.2.2.1. Physical Modification -- 4.3.2.2.2. Chemical Modification -- 4.4. Preparation -- 4.4.1. Polymeric Membranes -- 4.4.1.1. Stretching -- 4.4.1.2. Track-Etching -- 4.4.1.3. Sintering -- 4.4.1.4. Phase Inversion -- 4.4.1.5. Solution Coating -- 4.4.2. Ceramic Membranes -- 4.4.2.1. Paste Method -- 4.4.2.2. Uni-Axial Method -- 4.4.2.3. Other Methods -- 4.4.2.3.1. Slip Casting -- 4.4.2.3.2. Tape Casting -- 4.4.2.3.3. Dip Coating -- 4.4.2.3.4. Extrusion -- 4.5. Characterization -- 4.5.1. Membrane Morphological Analysis -- 4.5.1.1. Scanning Electron Microscopy -- 4.5.1.2. Membrane Pore Size and Pore Size Distribution -- 4.5.2. Membrane Structural and Functional Analysis -- 4.5.2.1. Thermogravimetric Analysis -- 4.5.2.2. X-Ray Diffraction Analysis -- 4.5.2.3. Fourier Transform Infrared Analysis. , 4.6. Ceramic Membrane Applications -- 4.6.1. Oily Wastewater Treatment -- 4.6.2. Juice Clarification -- 4.6.3. Heavy Metal Removal -- 4.6.4. Protein Separation -- 4.7. Cost Estimation -- References -- Chapter 5: Inorganic Membranes for Gas Separations -- 5.1. Introduction -- 5.2. Common Considerations and General Principles -- 5.2.1. Membrane Material and Microstructure -- 5.2.2. Membrane Formation -- 5.2.2.1. Dense Ceramic Membranes -- 5.2.2.2. Dense Metallic Membranes -- 5.2.2.3. Microporous Membranes -- 5.2.3. Gas Separation Mechanism -- 5.2.3.1. Dense Ceramic Membranes -- 5.2.3.2. Dense Metallic Membranes -- 5.2.3.3. Microporous Membranes -- 5.2.4. Performance Indicators -- 5.2.4.1. Permeation -- 5.2.4.2. Selectivity -- 5.3. Dense Ceramic Membranes -- 5.3.1. Mixed Ionic-Electronic Conducting (MIEC) Ceramics -- 5.3.1.1. Material Structure and Basic Concepts -- 5.3.1.2. Membrane Transport -- 5.3.1.3. Membrane Configuration, Microstructure, and Fabrication -- 5.3.1.4. MICE Membranes Based on Material Families -- 5.3.2. Mixed Protonic-Electronic Conducting Ceramics -- 5.3.2.1. Hydrogen Transport Mechanisms -- 5.3.2.2. Mixed Protonic-Electronic Conducting Materials -- 5.3.2.3. Preparation of Mixed Protonic-Electronic Conducting Membranes -- 5.4. Dense Metallic Membranes -- 5.4.1. Separation Mechanism -- 5.4.2. Pd-Based Membranes for Hydrogen Separation -- 5.4.2.1. Chemical Stabilities -- 5.4.2.2. Pd-Based Alloys -- 5.4.3. Formation of Pd-Based Membrane -- 5.4.3.1. The Roles of the Membrane Support -- 5.4.3.2. Membrane Formation Methods -- 5.5. Microporous Membranes -- 5.5.1. Silica Membranes -- 5.5.1.1. Sol-Gel Methods -- 5.5.1.2. Applying Sol Onto a Porous Support -- 5.5.2. Zeolite Membranes -- 5.5.2.1. Fabrication Methods -- 5.5.2.1.1. In Situ Hydrothermal Method -- 5.5.2.1.2. Secondary Growth -- 5.5.2.1.3. Phase Transport Method. , 5.5.2.2. Modifications of Zeolite Membranes -- 5.5.3. Carbon Membrane -- 5.5.3.1. Precursor Polymeric Materials -- 5.5.3.2. Converting Conditions -- 5.5.3.3. Membrane Configurations -- 5.5.4. Gas Transport Through Microporous Membranes -- 5.6. Summary -- References -- Further Reading -- Chapter 6: Pervaporation and Vapor Separation -- 6.1. Introduction -- 6.2. Theory Background -- 6.2.1. Transport Mechanism -- 6.2.2. Evaluation of Pervaporation and Vapor Separation Membranes -- 6.3. Fabrication of Pervaporation and Vapor Separation Membranes -- 6.3.1. Solution Casting -- 6.3.2. Hollow Fiber Spinning -- 6.3.3. Typical Methods for Fabricating Composite Membranes -- 6.3.3.1. Solution Coating -- 6.3.3.2. Interfacial Polymerization -- 6.3.3.3. Layer-by-Layer Technology -- 6.3.4. Physicochemical Modifications -- 6.4. Pervaporation Membranes -- 6.4.1. Dehydration of Organics -- 6.4.1.1. Highly Hydrophilic Polymeric Membranes -- 6.4.1.2. Polyimide Membranes -- 6.4.1.3. Membranes From Other Aromatic Polymers -- 6.4.1.4. Polyamide Membranes -- 6.4.1.5. Membranes From Perfluoro Polymers -- 6.4.1.6. Mixed Matrix Membranes (MMMs) -- 6.4.2. Removal of Organics From Aqueous Solutions -- 6.4.2.1. Hydrophobic Polymeric Membranes -- 6.4.2.2. MMMs -- 6.4.3. Organic/Organic Separation Membranes -- 6.4.3.1. Polymeric Membranes -- 6.4.3.2. MMMs -- 6.5. Vapor Permeation -- 6.6. Useful Characterization Methods for Pervaporation and Vapor Separation Membranes -- 6.7. Conclusions and Perspective -- References -- Chapter 7: Pervaporation and Hybrid Vacuum Membrane Distillation Technology and Applications -- 7.1. Introduction -- 7.2. Vacuum Membrane Distillation and Hybrid Pervaporation Membranes -- 7.3. AZEO-SEP™, VOC-SEP™, and AQUA-SEP™: Products of Petro Sep -- 7.4. Solvent Recovery and Wastewater Treatment. , 7.5. Recovery of Nitrates, Solvents, and Water From Wastewater of Gold and Silver Plating Industry by Using Hybrid VOC SE ...
    Additional Edition: ISBN 0-12-812815-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 01281816x?
Did you mean 012182814x?
Did you mean 0121828166?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages