UID:
almafu_9959050766502883
Format:
1 online resource (364 pages)
ISBN:
9780128134788
,
012813478X
Note:
Front Cover -- Biomaterials in Translational Medicine -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Preface -- 1 Translational medicine and biomaterials: Basics and relationship -- 1.1 Overview of biomaterials in translational medicine -- 1.2 Fundamentals of translational medicine -- 1.2.1 Definitions -- 1.2.2 Challenges -- 1.2.3 Ethics -- 1.2.4 Education -- 1.3 Fundamentals of biomaterials science -- 1.3.1 Biomaterials and orthopedics -- 1.3.2 Hydrogels as biomaterials -- 1.3.3 Infectious disease control and biomaterials -- 1.3.4 Biomaterials for neurological disorders and neuroregeneration -- 1.3.5 Biomaterials for cancer -- 1.3.6 Biomaterials and teeth -- 1.3.7 Nanotechnology and picotechnology as biomaterials -- 1.3.8 Biomaterials as sensors -- 1.3.9 Biomaterials for drug delivery -- 1.3.10 Biomaterials and 3D printing -- 1.3.11 Biomaterials and stem cells -- 1.4 The role of biomaterials in translational medicine -- References -- 2 Regulatory aspects of medical devices and biomaterials -- 2.1 Introduction -- 2.2 Terminology -- 2.3 Basic pathways to medical device approval -- 2.3.1 Premarketing notification: the 510(k) application -- 2.3.1.1 The PMN review process -- 2.3.2 Premarket approval -- 2.3.2.1 The PMA review process steps -- 2.3.3 The humanitarian device exemption -- 2.3.3.1 Emergency and expanded approvals for the use of an investigational device -- 2.4 Comparison and contrasts between the various pathways -- 2.5 Postapproval follow-up for devices -- 2.6 Comparison with EU approval protocols of devices -- 2.7 Summary -- References -- 3 The translatory aspects of calcium phosphates for orthopedic applications -- 3.1 Brief introduction of calcium phosphates -- 3.2 Orthopedic implant coating -- 3.2.1 The translatory aspects of calcium phosphate orthopedic coatings -- 3.2.2 Porosity and roughness.
,
3.2.3 Adhesion strength -- 3.2.4 Crystallinity -- 3.2.5 Surface chemistry -- 3.3 Synthetic bone grafts -- 3.3.1 The translatory aspects of calcium phosphate bone grafts -- 3.3.2 Porosity and interconnectivity -- 3.3.3 Phase composition -- 3.3.4 Mechanical strength -- 3.4 New trends -- 3.4.1 Carriers for active agents -- 3.4.2 Three-dimensional-printing -- 3.5 Conclusion -- References -- 4 Cardiovascular engineering materials in translational medicine -- 4.1 Introduction -- 4.2 The replacement of cardiovascular system using engineered biomaterials -- 4.2.1 Valves -- 4.2.2 Vascular grafts -- 4.3 Injectable materials and their applications for cardiac repair and regeneration -- 4.3.1 Injectable hydrogels -- 4.3.2 Natural materials -- 4.3.2.1 Fibrin -- 4.3.2.2 Alginate -- 4.3.2.3 Hyaluronic acid -- 4.3.2.4 Collagen -- 4.3.2.5 Gelatin -- 4.3.2.6 Chitosan -- 4.3.2.7 Matrigel -- 4.3.2.8 Decellularized heart extracellular matrix -- 4.3.3 Synthetic materials -- 4.3.3.1 Poly(ethylene glycol)-based materials -- 4.3.3.2 N-Isoproylacrylamide-based materials -- 4.3.3.3 Poly(glycerol) sebacate -- 4.3.4 Hybrid materials -- 4.4 Discussion and concluding remarks -- References -- 5 Delivery systems for biomedical applications: Basic introduction, research frontiers and clinical translations -- 5.1 Introduction -- 5.1.1 Overview of delivery systems -- 5.1.1.1 Nanoparticles -- 5.1.1.2 Liposome -- 5.1.1.3 Coatings -- 5.1.1.4 Porous scaffolds -- 5.2 Biological cargos utilized in delivery systems -- 5.2.1 Types of biological cargos -- 5.2.2 Approaches and mechanisms of cargo loading -- 5.3 Mechanism for cargo delivery -- 5.3.1 Passive delivery -- 5.3.2 Active delivery -- 5.3.2.1 Temperature-triggered delivery -- 5.3.2.2 Light-sensitive systems -- 5.3.2.3 Ultrasound-triggered and magnetic field-triggered delivery systems -- 5.3.2.4 pH-sensitive delivery systems.
,
5.3.2.5 Mechano-triggered delivery systems -- 5.4 Research frontiers of delivery systems -- 5.4.1 Development trends of delivery systems -- 5.4.1.1 From single-functional to multifunctional -- 5.4.1.2 From passive release to active delivery -- 5.4.2 Current emphasis of delivery systems -- 5.4.2.1 Highly controllable release -- 5.4.2.2 Programmable release of biological cargos -- 5.5 Clinical translation of delivery systems -- 5.5.1 Oral delivery systems -- 5.5.2 Nanoparticles and liposomes -- 5.5.3 3D scaffolds and implants -- 5.6 Conclusions -- References -- 6 Biomaterials and scaffolds for the treatment of spinal cord injury -- 6.1 Introduction -- 6.2 Electrospun scaffolds -- 6.2.1 Electrospun scaffolds with aligned structures -- 6.2.2 Establishing 3D fibrous guidance channels -- 6.2.3 Incorporation of bioactive components -- 6.3 Self-assembling peptide scaffolds -- 6.4 Scaffolds based on carbon nanomaterials -- 6.4.1 Carbon nanotubes -- 6.4.2 Graphene -- 6.5 Scaffolds combined with nanoparticles -- 6.6 Summary -- References -- 7 MoS2-based biomaterials for cancer therapy -- 7.1 Introduction -- 7.2 MoS2-based nanomaterials for PTT -- 7.2.1 Basic properties and synthesis of MoS2 nanomaterials -- 7.2.2 MoS2 nanoparticles for photothermal monotherapy -- 7.2.3 MoS2-based nanomaterials for photothermal combination therapy -- 7.2.3.1 Combination of PTT with chemotherapy -- 7.2.3.2 Combination of PTT with PDT -- 7.2.3.3 Combination of PTT with RT -- 7.2.3.4 Combination of PTT with GT -- 7.3 MoS2-based biomaterials for tumor therapy and tissue regeneration -- 7.3.1 Conceptual background on integrating tumor therapy with tissue engineering -- 7.3.2 Preparation of MoS2-based bioceramic scaffolds -- 7.3.3 Functional evaluation of MoS2-based scaffolds -- 7.3.3.1 Photothermal heating capacity -- 7.3.3.2 In vitro and in vivo antitumor efficiency.
,
7.3.3.3 In vitro and in vivo tissue regeneration -- 7.4 Conclusions and perspectives -- Acknowledgments -- References -- 8 Surface modification of medical devices at nanoscale-recent development and translational perspectives -- 8.1 Coating as a surface additive modification approach -- 8.1.1 Nanostructured coatings with antibacterial properties -- 8.1.2 Nanostructured coatings with antiinflammation properties -- 8.1.3 Nanostructured coating in preventing thrombosis and restenosis -- 8.1.4 Key coating techniques that have high translation potential -- 8.1.4.1 Plasma spraying -- 8.1.4.2 Electrophoretic deposition -- 8.1.4.3 Sol-gel coating -- 8.2 Surface subtractive modification approaches -- 8.2.1 Blasting -- 8.2.2 Acid etching -- 8.2.3 Anodization -- 8.3 Nanofabrication-recent development originated from microelectronic industry for medical device applications -- 8.3.1 Fabrication techniques -- 8.3.1.1 Lithography -- 8.3.1.2 Deposition -- 8.3.1.3 Etching -- 8.3.1.4 Bottom-up wet chemical -- 8.3.2 Some important applications of micro- and nanofabrication in medical devices -- 8.3.2.1 Nanobiosensors -- 8.3.2.2 Transdermal and implantable devices -- 8.4 Translation and perspectives -- 8.5 Concluding remarks and future directions -- References -- 9 Nanotechnology and picotechnology: A new arena for translational medicine -- 9.1 Introduction -- 9.2 Definition of nanotechnology -- 9.3 Nanomaterials and synthesis approaches -- 9.3.1 Bottom-up -- 9.3.2 Top-down -- 9.4 Definition of regenerative medicine -- 9.5 Nanotechnology in regenerative medicine -- 9.5.1 Nanotechnology in wound dressings (skin regeneration) -- 9.5.2 Nanotechnology in cardiac tissue regeneration -- 9.5.3 Nanotechnology in bone regeneration (cartilage, orthopedics, and periodontal) -- 9.6 Concerns of using nanotechnology in medicine: nanotoxicity.
,
9.7 Definition and promises of picotechnology -- References -- 10 Advanced biomaterials for biosensor and theranostics -- 10.1 Introduction to biosensors and theranostics -- 10.1.1 Definition and classification of biosensors -- 10.1.1.1 Category based on bioreceptors -- 10.1.1.2 Category based on transducer -- 10.1.2 Theranostics: concept and purposes -- 10.2 Advanced biomaterials for biosensors -- 10.2.1 Carbon-based nanomaterials -- 10.2.1.1 Carbon nanotubes (CNTs) -- CNT-based electrochemical biosensors -- CNT-based immunosensors -- CNT-based optical sensors -- 10.2.1.2 Graphene-based biosensors -- Graphene-based electrochemical biosensors -- Graphene-based immunosensors -- Graphene-based gene biosensors -- 10.2.2 Conductive polymers -- 10.2.2.1 Polypyrrole -- 10.2.2.2 Polythiophene -- 10.2.2.3 Polyaniline and its derivatives -- 10.2.2.4 Polyacetylene -- 10.2.3 Quantum dots-based biosensor -- 10.2.3.1 Detection of nucleic acids -- 10.2.3.2 Detection of proteins and enzymes -- 10.3 Novel materials for theranostics -- 10.3.1 Constitution of theranostic systems -- 10.3.2 Novel materials for carriers in theranostic systems -- 10.3.2.1 Polymeric carriers -- Dendrimers -- Amphiphilic block copolymers -- Peptides -- Protein nanoparticles -- 10.3.2.2 Inorganic carriers -- Magnetic nanoparticles -- Quantum dots -- Metal nanoparticles -- Silica nanoparticles -- Calcium phosphates -- Carbon-based nanomaterials -- 10.3.2.3 Lipid-based carriers -- 10.3.3 Imaging or sensing agents -- 10.3.3.1 Materials for optical imaging -- 10.3.3.2 Materials for magnetic resonance imaging (MRI) -- 10.3.3.3 Materials for photoacoustic (PA) imaging -- 10.3.3.4 Materials for CT imaging -- 10.3.4 Therapeutic agents -- 10.3.4.1 Materials for chemotherapy -- 10.3.4.2 Materials for photodynamic therapy -- 10.3.4.3 Materials for photothermal therapy.
,
10.3.4.4 Materials for magnetothermal therapy.
Additional Edition:
ISBN 9780128134771
Additional Edition:
ISBN 0128134771
Language:
English
Bookmarklink