UID:
almafu_9961089897702883
Umfang:
1 online resource (xxix, 738 pages)
ISBN:
9780128136645
,
0128136642
,
9780128136638
,
0128136634
Anmerkung:
Front Cover -- Organic Materials as Smart Nanocarriers for Drug Delivery -- Copyright Page -- Contents -- List of Contributors -- Series Preface: Pharmaceutical Nanotechnology -- Preface -- 1 Metal-organic frameworks as expanding hybrid carriers with diverse therapeutic applications -- 1.1 Introduction -- 1.2 Classification of Metal-Organic Frameworks -- 1.3 Synthesis Approaches of Metal-Organic Frameworks -- 1.4 Physicochemical Characterization of Metal-Organic Frameworks -- 1.5 Classification of Metal-Organic Frameworks -- 1.5.1 Amorphous Metal-Organic Framework Structures -- 1.5.2 Crystalline Metal-Organic Frameworks Structures -- 1.5.3 Nanoscale Structures of Metal-Organic Frameworks -- 1.5.4 Structure of Biometal-Organic Frameworks -- 1.5.5 Luminescent Metal-Organic Framework Structures -- 1.6 Surface Modification of Metal-Organic Frameworks -- 1.6.1 Polymer-Grafted Metal-Organic Frameworks -- 1.6.2 Peptide-Functionalized Metal-Organic Frameworks -- 1.6.3 PEGylated Metal-Organic Frameworks -- 1.7 Applications of the Metal-Organic Frameworks -- 1.7.1 Chemical Catalysis -- 1.7.2 Storage of Various Gases -- 1.7.3 Biosensors -- 1.7.4 Drug Delivery Carriers -- 1.7.5 Cancer Therapy -- 1.7.6 Delivery of Biomolecules -- 1.7.7 Cellular Trafficking -- 1.7.8 Antibacterial Properties -- 1.7.9 Photodynamic Therapy -- 1.7.10 Computer Modeling -- 1.7.11 In Vitro Activity -- 1.7.12 Diagnostic Agents -- 1.8 Biodegradability and Stability -- 1.9 Toxicity and Safety Consideration -- 1.10 Industrial Scalability and Market Potential -- 1.11 Conclusions -- References -- 2 Natural and semisynthetic polymers in pharmaceutical nanotechnology -- 2.1 Introduction -- 2.2 Natural Polymers Used in Pharmaceutical Nanotechnology -- 2.2.1 Chitosan-Based Nanocarriers -- 2.2.2 Cellulose-Based Nanocarriers -- 2.2.3 Alginic Acid-Based Nanocarriers -- 2.2.4 Gelatin Nanocarriers.
,
2.2.5 Pectin Nanocarriers -- 2.2.6 Agar Nanocarriers -- 2.2.7 Tragacanth Nanocarriers -- 2.2.8 Collagen Nanoparticles -- 2.2.9 Silk Nanoparticles -- 2.2.10 Others -- 2.2.10.1 Starch-based nanoparticles -- 2.2.10.2 Casein nanoparticles -- 2.2.10.3 Carrgeenan nanoparticles -- 2.2.10.4 Pullulan nanoparticles -- 2.2.10.5 Gliadin nanoparticles -- 2.3 Applications of Natural Polymers in Pharmaceutical Drug Delivery -- 2.4 Methods for Cross-Linking Natural Polymers-Based Nanocarriers -- 2.4.1 Physical Cross-Linking -- 2.4.1.1 Pentasodium tripolyphosphate -- 2.4.1.2 Calcium chloride -- 2.4.1.3 Dextran sulfate -- 2.4.1.4 Other physical cross-linkers -- 2.4.2 Chemical Cross-Linking -- 2.4.2.1 Glutaraldehyde -- 2.4.2.2 Genipin -- 2.4.2.3 Glyoxal -- 2.4.2.4 Other bifunctional cross-linking agents -- 2.4.2.5 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide -- 2.4.2.6 Enzymatic cross-linking: Microbial transglutaminase -- 2.4.2.7 Other covalent cross-linking methods -- 2.5 Release Kinetics Exhibited by Natural Polymeric Nanocarrier Systems -- 2.5.1 Drug Release by Diffusion -- 2.5.2 Drug Release by Desorption of the Surface-Bound/Adsorbed Drug Diffusion -- 2.5.3 Drug Release by Polymer Degradation: Surface and Bulk Erosion -- 2.6 Modern Advances in Engineering Natural Polymeric Nanocarrier for Specific Drug Targeting -- 2.7 Limitations for Use of Natural Polymer-Based Nanoparicles in Pharmaceutical Applications -- 2.7.1 Limitations Due to the Natural Origin of the Polymers -- 2.7.2 Limitations Due to Nanoparticle Fabrication Conditions -- 2.7.3 Limitations Due to Polymeric Instabilities -- 2.8 Future Perceptive in Using Natural Polymeric Nanocarriers -- 2.9 Conclusion -- Abbreviations -- References -- Further Reading -- 3 Current perspectives on drug release studies from polymeric nanoparticles -- 3.1 Introduction -- 3.2 Factors Affecting Nanoparticle Drug Release.
,
3.2.1 Polymer Type -- 3.2.2 Polymer Blend -- 3.2.3 Solid-State Morphology -- 3.2.4 Drug Loading -- 3.2.5 Porosity -- 3.2.6 Particle Size -- 3.2.7 Type of Polymeric Nanoparticle -- 3.2.8 Other Factors -- 3.3 Common Methods Used in Drug Release Studies -- 3.4 Description of In Vitro Release Methods -- 3.4.1 Dialysis Methods -- 3.4.2 Sample-and-Separate Methods -- 3.4.3 Continuous Flow Method -- 3.4.4 Other Methods -- 3.4.5 Targeted Drug Delivery Methods -- 3.5 Analytical Methods Used in Drug Release Studies and Their Validation -- 3.6 Conclusion -- Abbreviations -- References -- Further Reading -- 4 Polymeric nanofibers for controlled drug delivery applications -- 4.1 Introduction to Nano-Carriers Materials -- 4.2 General Introduction of Nanofibers Using Polymeric Nanofibers -- 4.3 Structure and Properties of Nanofibers -- 4.3.1 Morphology of Nanofiber -- 4.3.2 Properties -- 4.4 Methods of Preparation of Nanofibers -- 4.4.1 Drawing -- 4.4.2 Template Synthesis -- 4.4.3 Phase Separation -- 4.4.4 Self-Assembly -- 4.4.5 Electrospinning Method -- 4.4.5.1 Process parameters -- 4.4.5.2 Polymers used in electrospinning method -- 4.5 Applications of Nanofibers -- 4.5.1 Mechanism of Nanofiber in Drug Delivery -- 4.5.2 Benefits for Drug Delivery System -- 4.5.3 Applications of Nanofibers as a Drug Delivery System -- 4.5.4 Oral Drug Delivery -- 4.5.5 Nanofibers in Tumor Targeting -- 4.5.6 Nanofibers in Wound Healing -- 4.5.7 Biomedical Application of Nanofibers -- 4.5.8 Application of Nanofibers in Tissue Engineering -- 4.5.9 Recent Patents on Nanofibers in Pharmaceutical Applications -- 4.6 Bioweb -- 4.7 AVflo and HealSmart -- 4.8 ReDura Dural Patch -- 4.9 Conclusion and Future Perspective of Nanofibers -- Abbreviations -- Acknowledgments -- References -- Further Reading -- 5 Polymeric hydrogels for contact lens-based ophthalmic drug delivery systems.
,
5.1 Introduction -- 5.1.1 Tears -- 5.1.2 Conjunctiva -- 5.1.3 Cornea -- 5.1.4 Sclera -- 5.1.5 Blood-Occular Barriers -- 5.2 Recent Advances to Enhance Ocular Drug Bioavailability -- 5.2.1 Prodrugs -- 5.2.2 Microemulsions -- 5.2.3 Nanosuspensions -- 5.2.4 Nanoparticles -- 5.2.5 Niosomes -- 5.2.6 Cubosomes -- 5.2.7 In Situ Forming Hydrogels -- 5.2.8 Liposomes -- 5.2.9 Dendrimers -- 5.2.10 Intraocular Implants -- 5.2.11 Contact Lenses -- 5.3 Objective of Using Polymeric Hydrogels for Contact Lens -- 5.3.1 Hydrophilic/Hydrophobic Copolymer Hydrogel -- 5.3.2 Colloid-Laden Hydrogel -- 5.3.3 Ligand-Containing Hydrogels -- 5.3.4 Molecularly Imprinted Polymeric Hydrogels -- 5.3.5 Surface-Modified Hydrogels -- 5.4 Classification of Contact Lenses -- 5.4.1 Soft Contact Lenses -- 5.4.2 Rigid Gas Permeable Contact Lenses -- 5.4.3 Daily Wear Lenses -- 5.4.4 Extended Wear Lenses -- 5.4.5 Disposable Wear Lenses -- 5.4.5.1 Colored contact lenses -- 5.4.5.2 Toric soft contact lenses -- 5.4.5.3 Bifocal/multifocal contact lenses -- 5.5 Method of Preparation -- 5.6 Customized Production Technique for Rigid Lenses -- 5.6.1 Diamond Turning/Lathe Cutting -- 5.6.2 Mass Production Technique -- 5.6.2.1 Injection-molding process -- 5.6.2.2 Spin casting -- 5.6.2.3 Quality control -- 5.6.2.4 Packaging -- 5.6.2.5 Manufacturing errors in contact lenses -- 5.6.2.6 Physical properties of contact lenses -- 5.6.2.6.1 Transparency of contact lenses -- 5.6.2.6.2 Oxygen permeability -- 5.6.2.6.3 Glass transition temperature -- 5.6.2.6.4 Wettability -- 5.6.2.6.5 Water content -- 5.7 Future Prospects -- 5.7.1 Disease Monitoring -- 5.7.2 Stem Cell-Coated Lens -- 5.7.3 Photochromic Contact Lens -- 5.7.4 Electronic Viewing -- 5.7.4.1 Challenges -- 5.8 Important Points -- 5.9 Conclusion -- References -- Further Reading -- 6 Palm-based nanoemulsions for drug delivery systems -- 6.1 Introduction.
,
6.2 Nanoemulsions as Drug Delivery System -- 6.2.1 Preparation and Optimization -- 6.2.1.1 Preparation of nanoemulsions for drug delivery -- 6.2.1.1.1 Microfluidization -- 6.2.1.1.2 High pressure homogenization -- 6.2.1.1.3 Ultrasonication -- 6.2.1.1.4 Phase inversion temperature and phase inversion composition methods -- 6.2.1.1.5 Solvent diffusion -- 6.2.1.2 Optimization of nanoemulsion for drug delivery -- 6.2.2 Physicochemical Characterization -- 6.2.3 In Vitro Studies -- 6.3 In Silico Studies -- 6.3.1 Surfactant Micellization -- 6.3.2 Self-Assembly of Palm-Based Esters -- 6.3.3 Self-Assembly of Phosphatidylcholines -- 6.3.4 Monte Carlo Simulation of Surfactants -- 6.3.5 Self-Assembly of Palmitate Ester and Diclofenac -- 6.4 Conclusions -- References -- Further Reading -- 7 Strategies for the design and synthesis of pincer-based dendrimers: Potential applications -- 7.1 Introduction -- 7.2 Polyaromatic Pincer Dendrimers -- 7.3 Polyamidoamine-Functionalized Dendrimers With Pincer Complexes -- 7.4 Potential Applications of Metallopincers as Antitumoral Agents, Biomarkers, Sensors, and Bioorganometallic Entities -- 7.5 Pincer Dendrimers for Catalytic Applications -- 7.6 Conclusions -- Acknowledgments -- References -- Further Reading -- 8 Nanohydrogels: Emerging trend for drug delivery -- 8.1 Introduction -- 8.1.1 Nanohydrogels -- 8.1.1.1 Advantages of nanohydrogels -- 8.1.1.2 Limitations/Drawbacks of Nanogels -- 8.2 Classification of Nanogels -- 8.2.1 On the Basis of Cross-Linking -- 8.2.1.1 Chemical cross-linking -- 8.2.1.1.1 Photo-induced -- 8.2.1.1.2 Amine-based -- 8.2.1.1.3 Disulfide-based -- 8.2.1.2 Physical cross-linking -- 8.2.2 Based on Type of Polymer -- 8.2.2.1 Natural -- 8.2.2.1.1 Chitosan -- 8.2.2.1.2 Alginate -- 8.2.2.1.3 Dextran -- 8.2.2.1.4 Hyaluronic acid -- 8.2.2.2 Synthetic -- 8.2.2.2.1 Poly(vinyl alcohol).
,
8.2.2.2.2 Poly(ethylene oxide) and poly(ethyleneimine).
Sprache:
Englisch
Bookmarklink