Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    San Diego, CA :Elsevier,
    UID:
    almahu_9949983979502882
    Format: 1 online resource (734 pages)
    ISBN: 9780128203989 , 0128203986
    Series Statement: Advances in Nonlinear Dynamics and Chaos (ANDC)
    Note: Front Cover -- Renewable Energy Systems -- Copyright Page -- Contents -- List of contributors -- Preface -- About the book -- Objectives of the book -- Organization of the book -- Book features -- Audience -- Acknowledgments -- 1 Efficiency maximization of wind turbines using data-driven Model-Free Adaptive Control -- 1.1 Introduction -- 1.2 Problem statement -- 1.2.1 The problem of optimal power extraction for wind turbines -- 1.2.2 Data-driven Model-Free Adaptive Control -- 1.3 Control design -- 1.4 Simulation study using FAST -- 1.5 Conclusions -- References -- 2 Advanced control design based on sliding modes technique for power extraction maximization in variable speed wind turbine -- 2.1 Introduction -- 2.1.1 A description of wind turbines -- 2.1.2 Wind turbines structures and operation conditions -- 2.1.2.1 Operation regions -- 2.1.3 Problem statement -- 2.1.4 The main contribution -- 2.1.5 Chapter structure -- 2.2 Modeling variable speed wind turbine -- 2.2.1 Aerodynamic subsystem of wind turbine -- 2.2.2 Mechanical subsystem of wind turbine -- 2.2.3 Electrical subsystem of wind turbine -- 2.2.4 Control objectives for variable speed wind turbine -- 2.3 Sliding mode control design -- 2.3.1 Super twisting algorithm -- 2.3.2 Variable speed wind turbine controller design -- 2.4 Simulation results -- 2.4.1 Test conditions -- 2.4.2 Discussion of the simulation results -- 2.5 Conclusion and future directions -- Acknowledgments -- Nomenclature -- References -- Appendix -- 3 Generic modeling and control of wind turbines following IEC 61400-27-1 -- 3.1 Introduction -- 3.2 Literature review -- 3.3 Modeling, simulation and validation of the Type 3 WT model defined by Standard IEC 61400-27-1 -- 3.3.1 IEC Type 3 WT model -- 3.3.2 Modeling of the generic Type 3 WT model -- 3.3.2.1 Aerodynamic model -- 3.3.2.2 Pitch control model. , 3.3.2.3 Mechanical model -- 3.3.2.4 P control model -- 3.3.2.5 Q control model -- 3.3.2.6 Q limitation model -- 3.3.2.7 Current limitation model -- 3.3.2.8 Generator system -- 3.3.3 Simulation and validation of the generic Type 3 WT model -- 3.4 Model validation results -- 3.4.1 Full load validation test cases -- 3.4.2 Partial load validation test cases -- 3.5 Conclusions -- References -- 4 Development of a nonlinear backstepping approach of grid-connected permanent magnet synchronous generator wind farm structure -- 4.1 Introduction -- 4.2 Related work -- 4.3 Mathematical model of wind turbine generator -- 4.3.1 The wind turbine system -- 4.3.2 PMSG modeling -- 4.4 Control schemes of wind farm -- 4.4.1 MPPT technique -- 4.4.2 Nonlinear control of WFS -- 4.4.2.1 Generator side converters control -- 4.4.2.2 Pitch angle control -- 4.4.2.3 Control of inverter -- 4.4.3 Vector control technique of WFS -- 4.4.3.1 Regulator of PMSG side -- Constitution of current regulators -- Velocity regulation -- 4.4.3.2 Control technique for the inverter -- Reactive and active power regulation -- dc-Link control -- 4.5 Simulation result analysis -- 4.6 Conclusions -- Appendix -- References -- Further reading -- 5 Model predictive control-based energy management strategy for grid-connected residential photovoltaic-wind-battery system -- 5.1 Introduction -- 5.1.1 Motivations -- 5.1.2 Contributions -- 5.1.3 Organization of the chapter -- 5.2 Related works -- 5.3 The architecture of original grid-tied PV-WT-battery and optimal control strategy -- 5.3.1 Subsystems -- 5.3.2 PV generator -- 5.3.3 Wind generator -- 5.3.4 Battery storage system -- 5.3.5 Utility grid and electricity tariff -- 5.4 Energy management strategy and the model of the open-loop control -- 5.4.1 Energy management strategy -- 5.4.2 Objective function -- 5.4.3 Constraints and power flow limits. , 5.4.3.1 Power balance -- 5.4.3.2 Constraints -- 5.4.3.3 Limitations of power flow -- 5.4.4 The applied algorithm -- 5.5 Model predictive control for the PV/wind turbine/battery system -- 5.5.1 Multiinput-multioutput linear state-space model of the designed system -- 5.5.2 Design of the model predictive control -- 5.5.2.1 The objective function of the MPC approach and constraints -- 5.5.3 Pseudo code of the model predictive control approach -- 5.6 Results and discussion -- 5.6.1 Case study description -- 5.6.2 Simulation results and discussion -- 5.6.3 Economic analysis -- 5.7 Conclusion -- References -- 6 Efficient maximum power point tracking in fuel cell using the fractional-order PID controller -- 6.1 Introduction -- 6.2 PEMFC system description -- 6.2.1 Working principle -- 6.2.2 Mathematical model: PCM -- 6.2.3 Characteristic power versus current plots of the used PEMFC -- 6.3 MPPT control configuration -- 6.3.1 MPPT controller -- 6.3.2 PWM generator -- 6.3.3 DC/DC converter -- 6.3.4 Load -- 6.4 Design and implementation of FOPID MPPT control technique -- 6.5 Controller tuning using GWO -- 6.6 MPPT performance analysis -- 6.6.1 Case A: performance assessment: variation in λ -- 6.6.1.1 Transient analysis -- 6.6.1.2 Steady-state analysis -- 6.6.2 Case B: performance assessment: variation in T -- 6.6.2.1 Transient analysis -- 6.6.2.2 Steady-state analysis -- 6.7 Conclusion -- References -- 7 Robust adaptive nonlinear controller of wind energy conversion system based on permanent magnet synchronous generator -- 7.1 Introduction -- 7.2 Speed-reference optimization: power to optimal speed -- 7.2.1 Power characteristic of the turbine P(Ω,vw) -- 7.2.2 Optimal power characteristic of the turbine (Popt,Ω) -- 7.3 Modeling of the association "permanent magnet synchronous generator-AC/DC/AC converter". , 7.3.1 Modeling of the combination "permanent magnet synchronous generator-AC/DC rectifier" -- 7.3.2 Modeling of the combination "DC/AC inverter-grid" -- 7.4 State-feedback nonlinear controller design -- 7.4.1 Control objectives -- 7.4.2 Speed regulator design for synchronous generator -- 7.4.3 d-Axis current regulation -- 7.4.4 Reactive power and DC voltage controller -- 7.4.4.1 DC voltage loop -- 7.4.4.2 Reactive power loop -- 7.5 Output-feedback nonlinear controller design -- 7.5.1 Permanent magnet synchronous generator model in αβ-coordinates -- 7.5.2 Model transformation and observability analysis -- 7.5.3 High-gain observer design and convergence analysis -- 7.5.4 Observer structure -- 7.5.5 Stability analysis of the proposed observer -- 7.5.6 Observer in ξ-coordinates -- 7.5.7 Output-feedback controller -- 7.5.8 Simulation results -- 7.5.8.1 Simulation protocols -- 7.5.8.2 Construction of the speed-reference optimizer -- 7.5.8.3 Illustration of the observer performances -- 7.5.8.4 Output-feedback controller performances -- 7.6 Digital implementation -- 7.6.1 Foreground general considerations -- 7.6.2 Practical scheme -- 7.6.3 Observer discretization -- 7.6.3.1 Technical discussion -- 7.6.3.2 Digital synthesis of the observer -- 7.6.4 Digital output-feedback controller -- 7.6.5 Simulation results -- 7.7 Conclusion -- References -- 8 Improvement of fuel cell MPPT performance with a fuzzy logic controller -- 8.1 Introduction -- 8.2 Modeling of proton-exchange membrane fuel cells -- 8.2.1 Static model of PEMFC -- 8.2.2 Dynamic model of PEMFC -- 8.3 Mathematical model of DC-DC converter -- 8.4 Proposed algorithm -- 8.5 Results and analysis -- 8.6 Discussion -- 8.7 Conclusion and perspectives -- References -- 9 Control strategies of wind energy conversion system-based doubly fed induction generator -- 9.1 Introduction. , 9.2 Modeling with syntheses of PI controllers of wind system elements -- 9.2.1 Mathematical model and identification of wind turbine parameters -- 9.2.2 Synthesis of wind turbine MPPT regulation -- 9.2.2.1 Overview of the PI controller in the MPPT model -- 9.2.3 Mathematical model and identification of DFIG parameters -- 9.2.4 Synthesis of direct and indirect vector commands with DFIG PI -- 9.2.4.1 Direct PI vector control synthesis with power loops -- 9.2.4.2 Synthesis of indirect PI vector control with and without power loops -- 9.2.5 Modeling and synthesis of the adjacent PWM control of the inverter -- 9.2.5.1 Synthesis of control by sine-delta modulation -- 9.2.6 Modeling and synthesis of the DC bus PI and the network filter -- 9.2.6.1 Synthesis of the PI controller of your DC bus voltage (Nazari et al., 2017) -- 9.2.6.2 Overview of the PI filter current controllers ifd and ifq -- 9.3 Results and discussions -- 9.3.1 Step 1: simulation of DFIG power control with DVC-PI, IVCOL-PI, and IVCCL-PI techniques in an ideal system -- 9.3.2 Step 2: simulation of the control of the wind energy conversion chain of the real system with the DVC-PI, the IVCOL-P... -- 9.4 Conclusion -- Appendix -- References -- 10 Modeling of a high-performance three-phase voltage-source boost inverter with the implementation of closed-loop control -- 10.1 Introduction -- 10.2 Mathematical analysis of the three-phase boost inverter -- 10.2.1 Mathematical analysis based on one-leg operation -- 10.2.1.1 Mode I operation -- 10.2.1.2 Mode II operation -- 10.2.2 State space representation of the one-leg operation -- 10.2.3 State space analysis considering six state variables -- 10.2.4 Transfer function modeling -- 10.2.5 Selection of inductor and capacitor values -- 10.3 System description -- 10.3.1 Closed-loop control -- 10.4 Results and discussions -- 10.5 Conclusion -- References. , 11 Advanced control of PMSG-based wind energy conversion system applying linear matrix inequality approach.
    Additional Edition: ISBN 9780128200049
    Additional Edition: ISBN 0128200049
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 0121820009?
Did you mean 0128200294?
Did you mean 012820074x?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages