UID:
almahu_9949983884702882
Umfang:
1 online resource (476 pages)
ISBN:
9780128200957
,
0128200952
Anmerkung:
Front Cover -- ENERGY STORAGE IN ENERGY MARKETS -- ENERGY STORAGE IN ENERGY MARKETS: UNCERTAINTIES, MODELLING,ANALYSIS AND OPTIMIZATION -- Copyright -- Contents -- Contributors -- Introduction -- 1 - Energy market fundamentals and overview -- 1. History of electricity markets -- 1.1 Foundation of the electricity markets -- 1.2 Deregulation of the electricity market -- 1.3 Electric energy restructuring and integration -- 2. Challenges of energy markets -- 3. Different energy market services -- 3.1 Competitive electricity service -- 3.2 Wholesale electricity market -- 3.3 Retail electricity market -- 3.4 Electricity capacity markets -- 3.5 Day-ahead market -- 3.5.1 Intraday market -- 3.6 Real-time market -- 3.7 Regulation market -- 3.8 Reserve market -- 3.9 Balancing market -- 3.10 Novel energy markets including ramp markets -- 4. Fundamental features of the energy market -- 4.1 Electricity spot prices -- 4.2 Fundamental features of the PJM day-ahead energy market -- 4.3 Fundamental features of the real-time energy market -- 5. Conclusions -- References -- 2 - Energy storage fundamentals and components -- 1. Introduction -- 2. Types of EES technologies -- 2.1 Electrotechnical such as batteries and fossil fuel storage -- 2.1.1 Lead-acid (LA) batteries -- 2.1.2 Sodium-sulfur (NaS) -- 2.1.3 Lithium ion (Li ion) -- 2.1.4 Nickel-based batteries -- 2.1.5 Fuel cell (FC) -- 2.2 Mechanical storage systems -- 2.2.1 Pumped hydraulic storage (PHS) -- 2.2.2 Flywheel energy storage (FES) -- 2.2.3 Compressed air energy storage (CAES) -- 2.3 Thermal energy storage (TES) -- 2.4 Other types of EES such as superconductive magnetic and supercapacitors -- 2.4.1 Superconductive magnetic energy storage (SMES) -- 2.4.2 Supercapacitor energy storage (SCES) -- 3. The operation of EES in power markets -- 4. The current stage of energy storage systems in the world.
,
5. Conclusions -- References -- 3 - Overview of energy storage systems for wind power integration -- 1. Introduction -- 2. Electrical energy storage systems -- 3. Energy storage system application -- 3.1 Frequency regulation -- 3.2 Voltage level improvement -- 3.3 Load following -- 3.4 Demand shifting and peak shaving -- 3.5 Seasonal power storage -- 3.6 Black start -- 3.7 Off-grid -- 3.8 Arbitrage/storage trades -- 3.9 Nonspinning reserve -- 4. Different types of energy storage systems -- 4.1 Superconducting Magnetic Energy Storage (SMES) -- 4.2 Supercapacitor Energy Storage System -- 4.2.1 Supercapacitor advantages -- 4.2.2 Supercapacitor disadvantages -- 4.3 Compressed Air Energy Storage (CAES) -- 4.4 Flywheel Energy Storage (FES) -- 4.4.1 FES advantage -- 4.4.2 FES disadvantage -- 4.5 Pumped Storage -- 4.6 Batteries -- 5. Energy storage systems in wind turbines -- 5.1 Power characteristic in terms of wind turbine speed -- 5.2 Taxonomy of most general electric generators in wind energy conversion systems -- 5.3 SMES connected to wind farms -- 5.4 FES connected to wind farms -- 5.5 Supercapacitor connected to wind farms -- 5.6 Battery connected to wind farm -- 5.7 Design criteria and comparison of energy storage system technologies -- 6. Chapter summary -- References -- 4 - Optimization of energy storage systems in energy markets -- 1. Introduction -- 2. Problem formulation -- 2.1 Objective functions -- 2.2 Constraints -- 3. Modeling uncertainties -- 3.1 Uncertainty in energy prices -- 3.2 Uncertainty in reservation delivery -- 3.3 Uncertainty in the final objective function -- 4. Systems understudy -- 5. Simulation and numerical results -- 5.1 Scenario 1: No ESS presence and no uncertainty -- 5.2 Scenario 2: with the presence of ESS and without uncertainty -- 5.3 Scenario 3: uncertainty in energy prices and reservation delivery -- 6. Conclusion.
,
References -- 5 - IGDT-based optimal low-carbon generation dispatch of power system integrated with compressed air energy storage ... -- 1. Introduction -- 2. Problem formulation -- 2.1 Deterministic approach -- 2.2 IGDT-based robust generation dispatch -- 3. Input data and results -- 3.1 Results -- 4. Conclusion -- References -- 6 - An overview of battery economics in the electric vehicles industry -- 1. Introduction -- 1.1 An overview of the electric vehicles market -- 1.2 Architecture of Electric Vehicles -- 1.2.1 Series hybrid electric architecture -- 1.2.2 Parallel hybrid electric architecture -- 1.2.3 Series-parallel hybrid electric architecture -- 2. Electric vehicles market -- 3. Lead-acid batteries -- 3.1 Types of lead-acid batteries -- 3.1.1 Flooded lead-acid batteries -- 3.1.2 Sealed lead-acid batteries -- 3.1.2.1 AGM (Absorbed Glass Mat) -- 3.1.2.2 Gel Cell (gelified electrolyte) -- 3.1.3 Deep cycle lead-acid batteries -- 3.1.4 Engine starting (cranking) lead-acid batteries -- 3.1.5 Standby lead-acid batteries -- 3.1.6 Marine lead-acid batteries -- 3.2 Advantages of lead-acid batteries -- 3.3 Lead-acid battery market -- 4. Nickel metal hydride batteries -- 4.1 Nickel metal hydride battery market -- 5. Lithium-ion batteries -- 5.1 Types of lithium-ion batteries -- 5.1.1 Lithium polymer batteries -- 5.1.2 Lithium-ion batteries -- 5.1.3 Lithium-ion battery market -- 6. Summary -- References -- 7 - Energy vehicles as means of energy storage: impacts on energy markets and infrastructure -- 1. Introduction -- 2. Overall picture of study -- 3. Problem formulation -- 3.1 Optimization problem at inner level -- 3.1.1 Objective function in inner level -- 3.1.2 Constraints in inner level -- 3.2 Optimization problem at upper level -- 3.2.1 Objective function in upper level -- 3.2.2 Constraints in upper level -- 3.3 Optimization algorithm.
,
4. Case study and simulation results -- 4.1 Test system -- 4.2 Simulation results -- 5. Conclusions -- References -- 8 - Application of electric vehicles as mobile energy storage systems in the deregulated active distribution networks -- 1. Introduction -- 2. A modern distribution system: structure and mathematical modeling -- 2.1 Main entities definition -- 2.2 Aggregators mathematical modeling -- 2.2.1 EVAG optimization model -- 2.2.2 DGAG optimization model -- 2.2.3 DRAG optimization model -- 2.3 MGO modeling -- 2.4 Unbalanced load flow: d-q formulation -- 2.5 The DSO decision-making -- 3. The operation framework -- 3.1 Main flowchart -- 3.2 Dynamic tariff mechanism -- 3.3 EVAGs' activity in an LLRC -- 4. EVAGs' activity in an HLRC -- 5. The link between MATLAB and GAMS -- 5.1 General view -- 5.2 Define GAMS in MATLAB's path list -- 5.3 MATLAB commands to generate gdx file for input parameters -- 5.3.1 Generated gdx files in MATLAB -- 5.3.2 Read gdx files from GAMS -- 5.4 Saving the output GAMS results in gdx format -- 5.5 Calling GAMs model from MATLAB -- 5.6 Extracting results from generated gdx files -- 5.7 A complete example -- 6. Simulation results -- References -- 9 - Economic analysis of energy storage systems in multicarrier microgrids -- 1. Introduction -- 2. System description -- 3. Scenario-based problem formulation -- 3.1 Scenario generation and reduction -- 3.2 Multienergy storage systems -- 3.3 Boiler -- 3.4 Demand response program -- 3.5 Thermal units -- 3.5.1 Ramp rate limits -- 3.5.2 Minimum up/down-time -- 3.5.3 Start-up and shutdown costs -- 3.6 Multienergy balancing -- 3.7 Objective function -- 4. Results and discussion -- 5. Conclusion -- References -- 10 - Optimal resilient scheduling of multicarrier energy distribution system considering energy storages and plug-i ... -- Nomenclature -- 1. Introduction.
,
2. Problem modeling and formulation -- 2.1 First-stage problem formulation -- 2.2 Second-stage problem formulation -- 2.3 Third-stage problem formulation -- 3. Solution algorithm -- 4. Numerical results -- 4.1 33-bus test system -- 4.2 Industrial district energy system -- 5. Conclusions -- References -- 11 - Optimal participation of electric vehicles aggregator in energy and flexible ramping markets -- 1. Introduction -- 2. Problem formulation -- 2.1 Objective function -- 2.2 Problem constraints -- 3. Method of scenario generation -- 4. Simulation results -- 4.1 Optimal self-scheduling of EVs aggregator to participate in the energy market (case 1) -- 4.2 Case 1 with FRP market (case 2) -- 5. Conclusions -- References -- 12 - Electric vehicles as means of energy storage: participation in ancillary services markets -- 1. Introduction -- 2. EVs as energy storage systems -- 2.1 Storage potentials of V2G -- 2.2 Ancillary services -- 2.2.1 Frequency regulation -- 2.3 EVs as power grid controller -- 2.4 Power reserve storage systems -- 2.4.1 Economic comparison -- 2.4.2 Battery degradation cost -- 3. Review on power regulation methods -- 4. Case study -- 4.1 Economic calculation -- 5. Conclusion -- References -- 13 - Evaluating the advantages of electric vehicle parking lots in day-ahead scheduling of wind-based power systems -- 1. Introduction -- 2. Problem formulation -- 2.1 Objective function -- 2.2 Problem constraints -- 2.2.1 Thermal unit operation limits -- 2.2.2 EVs parking lot constraints -- 2.2.3 AC-OPF and network constraints -- 3. Simulation and numerical results -- 3.1 Case study -- 3.2 Numerical results -- 4. Conclusion -- References -- 14 - Large-scale energy storages in joint energy and ancillary multimarkets -- 1. Introduction -- 2. Large-scale storage systems -- 2.1 Market participation -- 2.2 Future concepts -- 3. Economic justifications.
,
3.1 Flywheel energy storage system (FESS).
Sprache:
Englisch
Bookmarklink