UID:
almahu_9949984680402882
Umfang:
1 online resource (528 pages)
ISBN:
9780128210758
,
0128210753
Inhalt:
"The solutions to technical challenges posed by flight and space exploration tend to be multidimensional, multifunctional, and increasingly focused on the interaction of systems and their environment. The growing discipline of biomimicry focuses on what humanity can learn from the natural world. Biomimicry for Aerospace: Technologies and Applications features the latest advances of bioinspired materials–properties relationships for aerospace applications."--
Anmerkung:
Front Cover -- BIOMIMICRY FOR AEROSPACE -- BIOMIMICRY FOR AEROSPACE Technologies and Applications -- Copyright -- Contents -- Contributors -- Preface -- 1 - Biomimicry in aerospace: Education, design and inspiration -- One - Biomimicry and biodesign for innovation in future space colonization -- 1.1 Introduction -- 1.2 The entrepreneurial space industry -- 1.2.1 The entrepreneurial space industry urgently needs design -- 1.2.2 Habitability, static environments, and the need to create ad hoc solutions -- 1.2.3 Additive and in situ manufacturing in aerospace: Needs and implications -- 1.2.4 Next steps toward biodesign in space colonization -- 1.3 From biomimicry and bio-inspired design to bio-enhanced and biohybrid design, technology, and innovation -- 1.3.1 Next Nature, Material Ecology, and Biodesign -- 1.3.1.1 Next Nature -- 1.3.1.2 Material Ecology -- 1.3.1.3 Biodesign -- 1.3.2 Hybrid approaches to nature, culture, and emerging technologies for aerospace -- 1.3.3 Other considerations and potential future implications -- 1.4 Applied research into biomimetic and algorithmic design -- 1.4.1 How algorithmic design is enhancing the biomimetic approach -- 1.4.2 Behavioral protocols: using inner and outer forces -- 1.4.3 Behavioral protocols: Absorbing the context -- 1.4.4 Bio-affected protocols and in situ manufacturing technologies: A potential for future planetary colonization -- 1.5 Bio-inspired, bio-enhanced, and biohybrid engineering: Speculative design concepts for space colonization -- 1.6 Current research in the Dubai Institute of Design and Innovation: Case studies with undergraduate students -- 1.6.1 Case study one: "Cryo-Slug" -- 1.6.2 Case study two: "Growing Materials" -- 1.7 Conclusions -- Acknowledgments -- References -- TWO - A bio-inspired design and space challenges cornerstone project -- 2.1 Introduction -- 2.2 NASA challenges.
,
2.3 Ask Nature strategy research -- 2.4 Challenges and strategies diagrams -- 2.5 Strategies illustration -- 2.6 Designing and drawing the bio-inspired design solution -- 2.7 Data analysis -- 2.8 Conclusion -- Acknowledgments -- References -- THREE - Toward systematic nature-inspired problem-solving for aerospace applications and beyond -- 3.1 Introduction -- 3.2 Biomimicry tool landscape -- 3.3 Virtual interchange for Nature-inspired Exploration: 2019 Biocene Tools Workshop -- 3.3.1 Purpose of the Biocene Tools Workshop -- 3.3.2 Workshop objectives and activities -- 3.3.3 Biocene meeting output -- 3.3.4 Biocene meeting results -- 3.4 Analysis and discussion -- 3.5 Conclusions and future directions -- Acknowledgments -- References -- Four - Parallels in communication technology and natural phenomena -- 4.1 Introduction -- 4.2 The Schmitt Trigger: Biomimetics and synchronicity -- 4.3 Sense and avoid: Collective motion in bird flocks and aircraft formations -- 4.4 Periodic structures: Crystals and electronic filters -- 4.5 Charles Darwin: Butterflies, genetic algorithms and microwave antennas -- 4.6 Color and light: Butterflies and dichroic mirrors -- 4.7 Smart materials: Artificial muscles and antennas -- 4.8 Whispers: Cathedrals and virus detectors -- 4.9 Spookiness: Quantum entanglement and advanced cryptography -- 4.10 Noise: Communications -- 4.11 Summary and conclusions -- References -- Five - Atacama Desert: Genius of place -- 5.1 Atacama Desert -- 5.1.1 Atacama aridity -- 5.1.2 Natural history of Atacama Desert -- 5.1.3 Operating conditions -- 5.1.4 Biogeochemical cycles in the Atacama Desert -- 5.1.4.1 Carbon cycle -- 5.1.4.2 Nitrogen cycle -- 5.1.4.3 Iodine cycle -- 5.2 Strategies adopted by species to survive in the Atacama Desert -- 5.2.1 Llareta (Azorella compacta) -- 5.2.1.1 Llareta biological strategy-adaptation.
,
5.2.1.2 Llareta design principles -- 5.2.1.3 Llareta application ideas -- 5.2.1.4 Llareta further design considerations -- 5.2.2 Desert Holly (Atriplex atacamensis) -- 5.2.2.1 Desert holly biological strategy-adaptation -- 5.2.2.2 Desert holly design principles -- 5.2.2.3 Desert holly application ideas -- 5.2.3 Tamarugo (Prosopis tamarugo) -- 5.2.3.1 Tamarugo biological strategy-adaptation -- 5.2.3.2 Tamarugo design principles -- 5.2.3.3 Tamarugo application ideas -- 5.2.4 Desert saltgrass (Distichlis spicata) -- 5.2.4.1 Desert saltgrass biological strategy-adaptation -- 5.2.4.2 Desert saltgrass design principles -- 5.2.4.3 Desert saltgrass application ideas -- 5.2.5 Vicuña (Vicugna vicugna) -- 5.2.5.1 Vicuña biological strategy-adaptation -- 5.2.5.2 Vicuña design principles -- 5.2.5.3 Vicuña application ideas -- 5.2.5.4 Vicuña further design considerations -- 5.2.6 Guanaco (Lama guanicoe) -- 5.2.6.1 Guanaco biological strategy-adaptation -- 5.2.6.2 Guanaco design principles -- 5.2.6.3 Guanaco application ideas -- 5.3 Discussion -- 5.4 Conclusions -- References -- 2 - Bio-inspired design: Aerospace and other practical applications -- SIX - Bio-inspired design and additive manufacturing of cellular materials -- 6.1 Introduction -- 6.1.1 Cellular materials -- 6.1.2 Additive manufacturing -- 6.1.3 Bio-inspired design -- 6.2 Cellular materials design -- 6.2.1 Cell selection -- 6.2.2 Cell size distribution -- 6.2.3 Cell parameters -- 6.2.4 Integration -- 6.3 Cellular materials in nature -- 6.3.1 Unit cell selection -- 6.3.1.1 Tessellation -- 6.3.1.2 Elements -- 6.3.1.3 Connectivity -- 6.3.2 Cell size distribution -- 6.3.3 Cell parameter optimization -- 6.3.4 Integration -- 6.4 Additive manufacturing design constraints -- 6.4.1 Feature resolution and fidelity -- 6.4.2 Dimensional accuracy -- 6.4.3 Scale dependence -- 6.4.4 Orientation dependence.
,
6.5 Toward a methodology: Honeycomb panel case study -- 6.5.1 Morphology -- 6.5.2 Design -- 6.5.3 Validation -- 6.6 Summary -- References -- Seven - Biomimetic course design exploration for improved NASA zero gravity exercise equipment -- 7.1 Introduction -- 7.2 University of Akron biomimicry course: Response to NASA design challenge -- 7.2.1 Course framework -- 7.2.2 Background of NASA's design challenge -- 7.2.3 Problem description -- 7.3 Biomimetic improvements to the exercise device box and accessories -- 7.3.1 Selection of biological role models -- 7.3.2 Foldable structures for improved functionality -- 7.3.2.1 Deployable honeycomb sandwich structures -- 7.3.2.2 Unfolding pattern of beach leaves -- 7.3.2.3 Mechanics of the primary feathers of pigeon wings -- 7.3.2.4 Alternative design suggestions -- 7.3.3 Hook and loop fastener shoes for increased exercise adhesion -- 7.3.4 Exercise program -- 7.4 Biomimetic improvements to ropes and cables -- 7.4.1 Biological model refinement -- 7.4.2 Fish fin-inspired modular rope design -- 7.4.3 Hierarchical structuring of ropes -- 7.4.4 Sandfish-inspired abrasion reduction of ropes -- 7.4.5 Pulley lubrication using electroosmosis -- 7.5 Conclusions and future work -- Acknowledgments -- References -- Eight - Biomimetics of boxfish: Designing an aerodynamically efficient passenger car -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Biomimetic design process -- 8.2.2 Aerodynamics of a yellow boxfish -- 8.2.2.1 Simplified boxfish model -- 8.2.2.2 Wind tunnel study -- 8.2.3 Biomimetic design of a one-box type car -- 8.2.4 Numerical study -- 8.2.4.1 Computational domain -- 8.2.4.2 Meshing -- 8.2.4.3 Boundary conditions and solver setup -- 8.3 Results and discussion -- 8.3.1 Boxfish aerodynamics -- 8.3.2 Aerodynamics of the biomimetic car -- 8.3.3 Computational fluid dynamics comparison study.
,
8.3.3.1 Pressure distribution -- 8.3.3.2 Pressure contour -- 8.3.3.3 Velocity contour -- 8.3.3.4 Streamlines -- 8.4 Conclusions -- References -- Nine - Thresholds of nature: How understanding one of nature's penultimate laws led to the PowerCone, a biomimetic ... -- 9.1 Background-thresholds abound -- 9.1.1 The generalized Navier-Stokes equation -- 9.2 The moment of inspiration -- 9.3 Maple key aerodynamics -- 9.4 The first prototypes -- 9.5 Wind tunnel testing a PowerCone -- 9.6 Time-Dependent Energy Transfer and thresholds -- 9.7 Changing fluids: Tidal testing a PowerCone -- 9.8 New computational frontiers: PowerCone -- 9.9 Conclusion: Full-Scale Testing -- References -- 3 - Biomimicry and foundational aerospace disciplines -- Ten - Slithering across worlds-snake-inspired robots for extraterrestrial exploration -- 10.1 Bio-inspired design -- 10.2 Identifying the problem-traversing other worlds -- 10.3 Searching planetary analogs for a natural model -- 10.4 Snake locomotion-turning obstacles into advantages -- 10.4.1 Lateral undulation -- 10.4.2 Sidewinding -- 10.4.3 Concertina -- 10.4.4 Rectilinear -- 10.4.5 More than four modes -- 10.4.6 Unknowns -- 10.5 Replicating snakes' success-bio-inspired snake robots -- 10.6 Applications and mission profiles -- 10.7 Conclusion: Bio-inspired snake robots for extraterrestrial exploration -- References -- Eleven - Biomimetic advances in photovoltaics with potential aerospace applications -- 11.1 Introduction -- 11.2 Solar applications in aerospace -- 11.2.1 Background and short history -- 11.2.2 Solar cell figures of merit -- 11.2.3 Unique issues for space solar cells -- 11.3 Classes of solar cells -- 11.3.1 Conventional solar cells -- 11.3.2 Excitonic solar cells -- 11.3.3 Majority versus minority carrier devices -- 11.4 Losses in solar cells -- 11.4.1 Intrinsic losses -- 11.4.2 Extrinsic losses.
,
11.4.3 Approaches to overcoming losses.
Weitere Ausg.:
ISBN 9780128210741
Weitere Ausg.:
ISBN 0128210745
Sprache:
Englisch
Bookmarklink