Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    UID:
    almahu_9949984141402882
    Umfang: 1 online resource (510 pages) : , illustrations, maps
    ISBN: 9780128213551 , 0128213558
    Anmerkung: Front Cover -- Tactile Internet -- Copyright -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- Acronyms -- 1 Tactile Internet with Human-in-the-Loop: New frontiers of transdisciplinary research -- 1.1 Motivation and vision of TaHiL -- 1.1.1 Skill transfer from humans to machines -- 1.1.2 Skill transfer from machines to humans -- 1.1.3 Skill transfer in holistic settings -- 1.2 Research objectives to meet the challenges of TaHiL -- 1.2.1 Objective 1: Human perception and action -- 1.2.2 Objective 2: Human-machine coaugmentation -- 1.2.3 Objective 3: Human-machine networks -- 1.2.4 Objective 4: Human-machine learning -- 1.2.5 Objective 5: Human-machine computation -- 1.2.6 Objective 6: Human-machine communication -- 1.3 A synergistic research program -- 1.4 Research outreaches and societal impacts -- 1.5 Conclusion and outlook -- Part 1 Domains of applications -- 2 Surgical assistance and training -- 2.1 Introduction -- 2.2 Human-to-machine: Modeling surgical skills -- 2.2.1 State of the art -- 2.2.1.1 Capturing surgical performance -- 2.2.1.2 Data annotation -- 2.2.1.3 Workflow analysis and modeling -- 2.2.2 Capturing surgical skills in the Sensor-OR -- 2.3 Machine-to-human: Surgical training -- 2.3.1 State of the art -- 2.3.1.1 Training systems for minimally invasive and robot-assisted surgery -- 2.3.1.2 Skill assessment and feedback -- 2.3.2 Data-driven surgical training -- 2.4 Human-machine collaboration: Context-aware assistance -- 2.4.1 State of the art -- 2.4.1.1 Visualization of navigation information -- 2.4.1.2 Input modalities and interaction techniques -- 2.4.1.3 Transfer of surgical skills to robotic platforms -- 2.4.2 Human-machine collaboration in the Sensor-OR -- 2.5 Conclusion and outlook -- 3 Human-robot cohabitation in industry -- 3.1 Introduction. , 3.1.1 Use-case scenario: Distributed cobotic cells -- 3.1.2 Categorization of cobotic cells -- 3.1.3 Applications -- 3.1.4 Outline -- 3.2 Model-based cobotic cells -- 3.2.1 State of the art for cobotic cell architectures -- 3.2.2 Research challenges -- 3.2.3 Research directions -- 3.2.4 Summary -- 3.3 Tactile robots in the Tactile Internet -- 3.3.1 State of the art -- 3.3.2 Challenges of current technology -- 3.3.3 Future research direction -- 3.3.4 Summary -- 3.4 Embedded hardware for robotics -- 3.4.1 State of the art for embedded hardware in robotics -- 3.4.2 Research questions to enhance cobotic cells with embedded hardware -- 3.4.3 Research directions -- 3.4.4 Summary -- 3.5 Synergistic links -- 3.6 Conclusion and outlook -- 4 Internet of Skills -- 4.1 Aims of the Internet of Skills -- 4.2 State-of-the-art research: Skill learning and technology -- 4.2.1 Skill, skilled behavior, and skill learning -- 4.2.2 Learning vs. performance: Why this distinction is important -- 4.2.3 Approaches to promote skill learning -- 4.2.4 TaHiL technology and skilled behavior and skill learning -- 4.3 Key requirements and challenges in designing skill learning with TaHiL technology -- 4.3.1 Requirements and challenges from a learning perspective -- 4.3.2 Requirements and challenges from a technical perspective -- 4.3.3 Requirements and challenges from a design, public engagement, and technology transfer perspective -- 4.3.3.1 Human- and experience-centered design -- 4.3.3.2 Public engagement -- 4.3.3.3 Technology transfer -- 4.3.4 Application strategies and previously developed demonstrators -- 4.3.4.1 Machine to human: TaHiL devices promote learning and skilled behavior -- Vibrotactile and visual feedback for learning dance choreography -- Tracking system for adjusting volleyball technique. , Real-time force feedback system for supporting and monitoring training in rowing -- Implications for further research and development -- 4.4 Beyond the state-of-the-art approach: Interdisciplinary collaboration -- 4.4.1 Developing a learning scenario with TaHiL -- 4.4.2 Current idea: Whole-body lifting task -- 4.5 Conclusion and outlook -- Part 2 Key technology breakthroughs -- 5 Haptic codecs for the Tactile Internet -- 5.1 Scope of haptic codecs -- 5.2 State-of-the-art research and technology -- 5.2.1 Perceptual models for somatosensory processing -- 5.2.1.1 Perceptual models for kinesthetic processing -- Weber's law of JND -- Multiple degrees of freedom in kinesthetic perceptual processing -- Other relevant properties for kinesthetic perceptual processing -- 5.2.1.2 Perceptual models for human tactile processing -- 5.2.2 Existing kinesthetic codecs -- 5.2.2.1 Packet size reduction -- 5.2.2.2 Packet rate reduction -- Perceptual deadband-based kinesthetic codec -- Multidimensional perceptual DB-based kinesthetic coding -- 5.2.3 Time-delayed teleoperation -- 5.2.4 Existing tactile codecs -- 5.3 Key challenges -- 5.4 Approaches addressing challenges and beyond the state of the art -- 5.4.1 Standardization of haptic codecs within IEEE -- 5.4.1.1 Perceptual wavelet-based vibrotactile codec -- 5.4.1.2 Perceptual vibrotactile codec based on sparse linear prediction -- Sparse Linear Prediction (SLP) -- Acceleration Sensitivity Function (ASF) -- Encoder -- Decoder -- Performance evaluation -- 5.4.1.3 The IEEE proposal of kinesthetic codec for time-delayed teleoperation -- System overview -- Extensions to improve haptic feedback quality -- Energy-based TDPA-ER -- Time-based update trigger -- Evaluation -- 5.4.2 Novel approaches for efficient teleoperation under time-delay -- 5.5 Synergistic links -- 5.6 Conclusion and outlook -- 6 Intelligent networks. , 6.1 Introduction and motivation -- 6.2 Evolution of communication networks -- 6.2.1 5G radio access networks -- 6.2.2 Softwarized networks -- 6.2.2.1 SDN -- 6.2.2.2 NFV -- 6.2.2.3 ICN -- 6.2.2.4 SFC -- 6.2.2.5 MEC -- 6.2.2.6 NS -- 6.2.2.7 Network security -- 6.2.2.8 TLS -- 6.3 TaHiL communication concept -- 6.3.1 Delay and latency components -- 6.3.1.1 System delay -- 6.3.1.2 Transmission delay -- 6.3.1.3 Propagation delay -- 6.3.1.4 Computing delay -- 6.3.2 Mapping the multimodel feedback -- 6.4 Architecture discussion -- 6.5 TaHiL testbeds -- 6.5.1 Artificial testbed -- 6.5.2 5G campus testbed -- 6.5.3 National-wide testbed -- 6.6 Synergy and collaboration -- 6.7 Conclusion and outlook -- 7 Augmented perception and interaction -- 7.1 Milestones for building Human-in-the-Loop systems -- 7.2 State-of-the-art research and technology -- 7.3 Identified key challenges of current research and technology -- 7.3.1 CPS with Human-in-the-Loop: Applications and problems -- 7.3.2 The perspective of humans in human-CPS interaction: Open questions for benchmark setting -- 7.3.3 The perspective of CPS in human-CPS interaction: Challenges for achieving design goals -- 7.3.4 State-of-the-art methodology: Limitations and implications for future research and technology -- 7.4 Research within TaHiL -- 7.4.1 Physically plausible environments and multimodal feedback during human-CPS interaction -- 7.4.2 Multisensory feedback control and the impact of feedback delays in visually coordinated hand-controlled tasks -- 7.5 Conclusion and outlook -- 8 Human-inspired models for tactile computing -- 8.1 Motivation and aims -- 8.2 Neuroscientific insights into human decision-making -- 8.2.1 Forward planning -- 8.2.2 Goal-directed control -- 8.2.3 Habitual control -- 8.2.4 A novel framework: Prior-based control -- 8.2.5 Prior-based control by example. , 8.2.6 Learning priors over action sequences -- 8.2.7 Context -- 8.3 Human-inspired learning -- 8.3.1 Stochastic operational models -- 8.3.2 State of the art -- 8.3.2.1 Learning techniques and formal methods -- 8.3.2.2 Reinforcement learning -- 8.3.3 Towards a new learning approach -- 8.3.3.1 Goal of the learning approach -- 8.3.3.2 Components of human-inspired learning -- 8.3.3.3 Implementing human-inspired learning -- 8.3.4 Human-inspired learning by example -- 8.3.4.1 Learning scenarios -- 8.3.4.2 Further aspects of human-inspired learning -- 8.4 Synergetic links -- 8.5 Conclusion and outlook -- Part 3 Fundamental challenges -- 9 Human perception and neurocognitive development across the lifespan -- 9.1 Introduction: Multisensory perception is the gateway for interactions -- 9.1.1 The Go-Senses framework for closed-loop human-machine interactions -- 9.1.2 Modeling human goal-directed multisensory perception -- 9.1.3 Understanding age-related and individual differences for user-centered technologies -- 9.2 State-of-the-art research on multisensory perception -- 9.2.1 From sensation to perception -- 9.2.2 Principles of multisensory integration -- 9.2.3 Neurocognitive bases for multisensory perception -- 9.2.4 Top-down attentional control of subjective sensory experiences -- 9.2.5 Neuromodulation of subjective sensory experiences -- 9.2.6 Formal models of multisensory integration -- 9.3 Outstanding challenges in current research -- 9.3.1 Temporal requirements of the senses -- 9.3.2 Age-related and individual differences require user-centered engineering design -- 9.4 Beyond the state of the art: synergistic research across disciplines -- 9.5 Conclusion and outlook -- 10 Sensors and actuators -- 10.1 Sensors and actuators of the future -- 10.2 State of the art -- 10.2.1 Textile smart wearables with haptic feedback and robotics -- 10.2.2 Smart vision. , 10.2.3 Immersive 3D audio integration.
    Weitere Ausg.: ISBN 9780128213438
    Weitere Ausg.: ISBN 0128213434
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0121821358?
Meinten Sie 0125233558?
Meinten Sie 0128210508?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz