Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    almahu_9949983638302882
    Format: 1 online resource (718 pages)
    ISBN: 9780128230008 , 0128230002
    Note: Front Cover -- Somatosensory Feedback for Neuroprosthetics -- Copyright Page -- Dedication -- Contents -- List of contributors -- Preface -- I. Background and fundamentals -- 1 Introduction to somatosensory neuroprostheses -- 1.1 Scope and history of neuroprostheses -- 1.2 Classification of neuroprostheses -- 1.3 Basic components of the somatosensory system -- 1.3.1 Somatosensory receptors and afferent nerves -- 1.3.2 Central pathways and cortical areas -- 1.3.3 Psychophysical processing and perception -- 1.4 Overview of somatosensory neuroprostheses -- 1.4.1 Noninvasive methods for feedback -- 1.4.1.1 Vibrotactile stimulation -- 1.4.1.2 Electrotactile stimulation -- 1.4.2 Invasive methods for feedback -- 1.4.2.1 Peripheral nerve stimulation -- 1.4.2.2 Brain cortex stimulation -- 1.5 Multidisciplinary approach and future directions -- Acknowledgments -- References -- 2 Proprioception: a sense to facilitate action -- 2.1 Introduction -- 2.2 Sensors contributing to proprioception -- 2.2.1 Muscle spindles -- 2.2.2 Golgi tendon organs -- 2.3 Proprioceptive coding along the cerebral cortical pathway -- 2.3.1 Dorsal column pathway -- 2.3.2 Thalamic proprioceptive encoding -- 2.3.3 Somatosensory cortex -- 2.4 Somato-motor connections and control of proprioceptive feedback -- 2.4.1 Spinal reflexes -- 2.4.2 Longer latency reflexes and sensorimotor connections -- 2.4.3 Top-down modulation of proprioceptive signals -- 2.4.3.1 Control of the fusimotor system -- 2.4.3.2 Neural sensory gain modulation -- 2.5 Cerebellar involvement in proprioception -- 2.5.1 Cerebellar afferent pathway -- 2.5.2 Sensorimotor adaptation -- 2.6 Summary -- References -- 3 Electrodes and instrumentation for neurostimulation -- 3.1 Two fundamental requirements -- 3.2 Recording and stimulating -- 3.3 Requirements for efficacy and safety of a stimulating device. , 3.4 Electrical model of stimulation: the electrode-tissue interface -- 3.4.1 Physical basis of the electrode-tissue interface -- 3.4.2 Capacitive/non-Faradaic charge transfer -- 3.4.3 Faradaic charge transfer and the electrical model of the electrode-electrolyte interface -- 3.4.4 Reversible and irreversible Faradaic reactions -- 3.4.5 The origin of electrode potentials and the three-electrode electrical model -- 3.4.6 Faradaic processes: quantitative description -- 3.4.7 Charge injection during electrical stimulation: interaction of capacitive and Faradaic mechanisms -- 3.4.8 Common waveforms used in neural stimulation -- 3.4.9 Pulse train response and ratcheting -- 3.4.10 Electrochemical reversal -- 3.5 Introduction to extracellular stimulation of excitable tissue -- 3.5.1 Cathodic and anodic stimulation -- 3.5.2 Exploiting the voltage-gated sodium channel -- 3.5.3 Quantifying action potential initiation -- 3.5.4 Bipolar configurations -- voltage-controlled stimulation -- 3.6 Mechanisms of damage -- 3.6.1 Tissue damage from intrinsic biological processes -- 3.6.2 Tissue damage from electrochemical reaction products -- 3.6.3 Multiple contributing factors -- 3.7 Design compromises for efficacy and safety -- 3.8 Requirements for efficacy and safety of a recording device -- 3.9 Electrical model of the recording electrode -- 3.10 Materials used for stimulating and recording electrodes -- 3.11 Instrumentation -- 3.11.1 Stimulation parameters of interest -- 3.11.2 Recording architecture and parameters of interest -- 3.11.3 Noise -- 3.11.4 Common mode rejection -- 3.11.5 Loading and impedance -- References -- 4 Stimulus interaction in transcutaneous electrical stimulation -- 4.1 Introduction -- 4.2 User opinions on sensory feedback -- 4.3 The role of sensory feedback in motor control -- 4.3.1 Control policy -- 4.3.2 Efferent copy -- 4.3.3 Signal noise. , 4.3.4 Implications -- 4.4 Physiology of sensory feedback -- 4.4.1 Mechanoreceptors -- 4.4.2 Stimulus interaction -- 4.5 Event-related feedback in upper-limb prosthetics -- 4.6 Optimizing event-related feedback strategies -- 4.6.1 Testing the internal model -- 4.6.2 Effect of stimulation pattern -- 4.6.3 Testing stimulus interaction -- 4.6.3.1 Methods -- 4.6.3.2 Results -- 4.6.3.3 Implications for prosthetic control -- 4.7 Conclusion -- References -- II. Non-invasive methods for somatosensory feedback and modulation -- 5 Supplementary feedback for upper-limb prostheses using noninvasive stimulation: methods, encoding, estimation-prediction ... -- 5.1 Motivation -- 5.2 Restoration of somatosensory feedback -- 5.3 Encoding feedback variables using multichannel electrotactile stimulation -- 5.4 Feeding back the command signal as opposed to its consequences -- 5.5 Feedback can support predictive and corrective strategies -- 5.6 Evaluating the role of feedback in the state estimation process -- 5.7 Concluding remarks -- Acknowledgments -- References -- 6 Noninvasive augmented sensory feedback in poststroke hand rehabilitation approaches -- 6.1 Introduction: sensory information in hand motor performance -- 6.1.1 Upper limb impairment -- 6.1.2 Sensorimotor control of the upper limb -- 6.1.3 Sensory input for optimal movement -- 6.1.4 Augmented feedback to stimulate neural plasticity -- 6.2 Current rehabilitation techniques -- 6.2.1 Approach to rehabilitation -- 6.2.2 Constraint-induced movement therapy -- 6.2.3 Mirror therapy -- 6.2.4 Robot-assisted therapy -- 6.3 Augmented sensory feedback -- 6.3.1 Aspects of feedback -- 6.3.2 Feedback modalities -- 6.3.3 Strategies for error feedback -- 6.3.4 Developing a reliance on extrinsic feedback -- 6.3.5 The sensory side of rehabilitation is an open question -- 6.3.6 Auditory feedback. , 6.3.6.1 Relevance of auditory information in motor learning -- 6.3.6.2 Types of augmented auditory feedback -- 6.3.6.3 Auditory feedback devices -- 6.3.6.3.1 Improvements in motor performance -- 6.3.6.3.2 Improvements in sensory awareness -- 6.3.6.4 Conclusions on auditory sensory feedback -- 6.3.7 Visual feedback -- 6.3.7.1 Relevance of visual information in motor learning -- 6.3.7.2 Benefits of virtual reality rehabilitation -- 6.3.7.3 General features of a virtual reality setup -- 6.3.7.3.1 Movement representation -- 6.3.7.3.2 Interaction with objects during task performance/training -- 6.3.7.3.3 Kinematic features recording -- 6.3.7.4 Studies in virtual reality for rehabilitation purposes -- 6.3.7.5 Other visual feedback delivery methods -- 6.3.7.6 Conclusions on visual feedback -- 6.3.8 Haptic feedback -- 6.3.8.1 Relevance of haptic information in motor learning -- 6.3.8.2 Movement-based (implicit) and sensory-based (explicit) haptic feedback -- 6.3.8.2.1 Implicit haptic feedback -- 6.3.8.2.2 Explicit haptic feedback: kinesthetic and tactile -- 6.3.8.2.3 Feedback for kinesthetic illusion -- 6.3.8.3 Devices for haptics -- 6.3.8.3.1 Types of augmented haptic stimulation -- 6.3.8.3.2 Vibrotactile sensory substitution -- 6.3.8.3.3 Proprioceptive feedback -- 6.3.8.3.4 Dynamic and performance feedback -- 6.3.8.4 Conclusions on haptic feedback -- 6.3.9 Multimodal feedback -- 6.3.9.1 Multisensory integration in the human brain -- 6.3.9.2 Studies on multimodal feedback -- 6.3.9.2.1 Visual and haptic feedback -- 6.3.9.2.2 Visual and auditory feedback -- 6.3.9.2.3 Combination of visual, haptic, and auditory feedback -- 6.3.9.3 Conclusions on multimodal feedback -- 6.3.10 Sensory information enhancement -- 6.3.10.1 Vagus nerve stimulation -- 6.3.10.2 Stochastic resonance -- 6.3.10.2.1 Optimal noise may benefit rehabilitation. , 6.3.10.2.2 Studies on stochastic resonance for rehabilitation -- 6.3.10.2.3 Possible implications in feedback evaluations -- 6.3.10.3 Conclusion on sensory enhancement -- 6.4 Future directions for augmented feedback -- References -- 7 Targeted reinnervation for somatosensory feedback -- 7.1 Introduction -- 7.2 Targeted reinnervation surgery and mechanisms of somatosensory restoration -- 7.3 Cutaneous reinnervation: tactile sensation -- 7.3.1 Neurophysiology of cutaneous targeted sensory reinnervation -- 7.3.2 Functional use of cutaneous sensory reinnervated sites -- 7.3.3 The importance of matched feedback: embodiment -- 7.3.4 Variability in cutaneous reinnervation -- 7.3.5 State of technology for providing haptic feedback -- 7.4 Muscle sensory reinnervation: kinesthesia -- 7.5 Neuropathic pain -- 7.6 Conclusion -- References -- 8 Transcranial electrical stimulation for neuromodulation of somatosensory processing -- 8.1 Introduction -- 8.2 Chapter objectives -- 8.3 Methods of transcranial electrical stimulation and mechanism of action -- 8.3.1 Transcranial direct current stimulation -- 8.3.2 Transcranial alternating current stimulation -- 8.3.3 Transcranial random noise stimulation -- 8.3.4 Transcranial pulsed current stimulation -- 8.4 Experiment results and discussion -- 8.4.1 Neuromodulation of somatosensory processing by transcranial electrical stimulation -- 8.4.1.1 Modulation of tactile senses and haptic perception -- 8.4.1.2 Modulation of proprioception -- 8.4.1.3 Sensory modulation in stroke patients -- 8.4.2 Modulating multisensory integration -- 8.5 Future opportunities -- 8.6 Conclusions -- References -- III. Peripheral nerve implants for somatosensory feedback -- 9 Connecting residual nervous system and prosthetic legs for sensorimotor and cognitive rehabilitation -- 9.1 Introduction -- 9.2 Intraneural electrodes. , 9.2.1 Implantable electrodes.
    Additional Edition: ISBN 9780128228289
    Additional Edition: ISBN 0128228288
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 0128221828?
Did you mean 0128028688?
Did you mean 0128182288?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages