Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949534952202882
    Umfang: 1 online resource (419 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323993494 , 0323993494
    Inhalt: Resource Recovery in Municipal Waste Waters provides various municipal wastewater remediation methods and techniques to recover materials from such wastewaters. Sections cover the basic principles of resource recovery, along with the recovery of methane, phosphorous, electricity and metals. The volume covers comprehensive cutting-edge techniques for resource recovery and municipal wastewater treatment and reports on new findings in these areas. It also introduces polluted waters as new and sustainable sources rather than seeing wastewaters as a source of hazardous organic and inorganic matters. The main advantages and disadvantages of both wastewater/polluted water treatment and recovery are also discussed.
    Anmerkung: Front Cover -- Resource Recovery in Municipal Waste Waters -- Copyright Page -- Contents -- List of contributors -- 1 Microalgae-based processes for resource recovery from municipal wastewater -- Abbreviations -- 1.1 Introduction -- 1.2 Microalgal species used for wastewater treatment -- 1.3 Cultivation modes of microalgae -- 1.3.1 Photoautotrophic cultivation -- 1.3.2 Heterotrophic cultivation -- 1.3.3 Mixotrophic cultivation -- 1.4 Nutrients recovery from municipal wastewater by microalgae -- 1.4.1 Recovery of nitrogen -- 1.4.2 Recovery of phosphorus -- 1.4.3 Recovery of organic carbon -- 1.5 Pollutants removal mechanisms by microalgae -- 1.5.1 Biosorption -- 1.5.2 Bioaccumulation -- 1.5.3 Biodegradation -- 1.6 Biomass harvesting techniques -- 1.6.1 Gravity sedimentation -- 1.6.2 Flocculation and coagulation -- 1.6.3 Flotation -- 1.6.4 Centrifugation -- 1.6.5 Filtration -- 1.7 Current challenges of microalgae-based technology and future perspectives -- 1.8 Conclusion -- References -- Further reading -- 2 Microalgae-based processes for resource recovery from municipal wastewater treatment plants -- 2.1 Introduction -- 2.1.1 Implantation of microalgae in wastewater treatment -- 2.1.2 Characteristics of microalgae species used in wastewater treatment -- 2.3 Microalgae role in wastewater treatment -- 2.4 Removal of nutrients from wastewater -- 2.4.1 Carbon removal -- 2.4.2 Nitrogen removal -- 2.4.3 Phosphorus removal -- 2.4.4 Removal of heavy metals -- 2.5 Strategies to enhance the removal of nutrients -- 2.5.1 Factors affecting microalgae-based nutrient removal -- 2.5.2 Cultivation system -- 2.5.3 pH effect -- 2.5.4 C/N/P ratio -- 2.5.5 Light Effect -- 2.5.6 Temperature -- 2.6 Bioremediation in wastewater treatment via microalgae -- 2.6.1 Microalgal treatment of wastewaters -- 2.6.2 Bioremediation of heavy metals. , 2.6.3 Bioremediation approaches in value-added products formation -- 2.6.3.1 Arsenic -- 2.6.3.2 Cadmium (Cd) -- 2.6.3.3 Chromium (Cr) -- 2.7 Economic feasibility of nutrient removal methods -- 2.7.1 Closed photobioreactors -- 2.7.2 Raceway pond system -- 2.8 Economic feasibility of microalgae cultivation -- 2.9 Challenges of implementing the proposed technology and future prospects -- References -- 3 Metal recovery from municipal wastewater treatment plants -- 3.1 Introduction -- 3.2 Various methods for metal recovery -- 3.2.1 Adsorption -- 3.2.2 Membrane filtration -- 3.2.3 Electrodialysis -- 3.2.4 Photocatalysis -- 3.2.5 Chemical precipitation -- 3.2.6 Wet-chemical treatment -- 3.2.7 Thermochemical process -- 3.2.8 Bioelectrochemical metal recovery method -- 3.3 Safe disposal of recovered metals -- 3.4 Challenges and future perspectives -- 3.5 Conclusion -- References -- 4 Hydrothermal processing for resource recovery from municipal wastewater treatment plants -- 4.1 Introduction -- 4.1.1 Hydrothermal processing -- 4.1.2 Types of hydrothermal processing -- 4.1.2.1 Thermal hydrolysis -- 4.1.2.2 Hydrothermal deconstruction (wet oxidation) -- 4.1.2.3 Hydrothermal carbonization -- 4.1.2.4 Hydrothermal liquefaction -- 4.1.3 Mechanisms -- 4.1.3.1 Chemical reactions -- 4.1.3.1.1 Free radical mechanism -- 4.1.3.1.2 Solubilization mechanism -- 4.1.3.1.3 Maillard reaction mechanism -- 4.1.3.2 Mass transfer -- 4.1.3.2.1 Solid-liquid mass transfer -- 4.1.3.2.2 Gas-liquid mass transfer -- 4.2 Methods -- 4.2.1 Opportunities for energy recovery -- 4.2.2 Opportunities for resource recovery -- 4.2.2.1 Fertiliser -- 4.2.2.2 Organic acid formation -- 4.2.2.2.1 Lactic acid -- 4.2.2.2.2 Acetic acid -- 4.3 Recent developments and research -- 4.3.1 Advanced thermal hydrolysis -- 4.3.2 Catalytic hydrothermal processing -- 4.4 Research gaps and future perspectives. , 4.4.1 Lack of fundamental data -- 4.4.2 Lack of process models -- 4.4.3 Technology readiness -- 4.4.4 Challenges and barriers to commercialization and solutions -- 4.5 Conclusion -- References -- 5 Phosphorous recovery from municipal wastewater -- 5.1 Introduction -- 5.2 P recovery from municipal wastewater -- 5.3 P Recovery technologies -- 5.3.1 Chemical methods -- 5.3.1.1 Chemical precipitation -- 5.3.1.1.1 Calcium -- 5.3.1.1.2 Fe salts -- 5.3.1.1.3 Aluminum -- 5.3.1.2 Recovery as struvite -- 5.3.1.3 Adsorption method -- 5.3.2 Physical treatment methods -- 5.3.2.1 Membrane separation technology -- 5.3.2.1.1 Nanofiltration -- 5.3.2.1.2 Forward osmosis -- 5.3.2.1.3 Electrodialysis -- 5.3.2.2 Thermal treatment -- 5.3.2.2.1 Incineration -- 5.3.2.2.2 Pyrolysis -- 5.3.2.2.3 Hydrothermal carbonization -- 5.3.2.2.4 Gasification -- 5.3.3 Biological treatment -- 5.3.3.1 Enhanced biological phosphorous removal -- 5.3.3.2 Microalgal -- 5.3.3.3 Microalgae-bacteria -- 5.3.3.4 Constructed wetlands -- 5.4 Discussion -- 5.5 Challenges and way forward -- 5.6 Conclusion -- Acknowledgment -- References -- 6 Insight into technologies for phosphorus recovery from municipal wastewater treatment plants -- 6.1 Introduction -- 6.1.1 Effects of P on the environment -- 6.2 Phosphorus recovery: municipal wastewater treatment plant -- 6.2.1 Aqueous phase recovery -- 6.2.2 Sewage sludge recovery -- 6.2.3 Sewage sludge ash recovery -- 6.3 Techniques for P recovery from the municipal wastewater treatment plant -- 6.3.1 Crystallization and precipitation -- 6.3.2 Wet chemical process -- 6.3.3 Thermochemical process -- 6.3.4 Biological process -- 6.3.5 Others -- 6.4 Phosphorus recovery technologies -- 6.4.1 Technologies for recovery of P from the aqueous phase -- 6.4.2 Technologies for recovery of P from sewage sludge -- 6.4.3 Technologies for recovery of P from sewage sludge ash. , 6.5 Research gaps and future perspectives -- 6.6 Conclusion -- References -- 7 Technologies for nitrogen recovery from municipal wastewater -- 7.1 Introduction -- 7.2 Sources of nitrogen in municipal wastewater -- 7.3 Nitrogen recovery from municipal wastewater -- 7.3.1 Nitrogen recovery by biological processes -- 7.3.1.1 Bioelectrochemical systems -- 7.3.1.2 Nitrogen assimilation by microalgae and cyanobacteria -- 7.3.1.3 Anaerobic membrane bioreactor -- 7.3.1.4 Waste activated sludge -- 7.3.2 Nitrogen recovery by chemical processes -- 7.3.2.1 Air stripping -- 7.3.2.2 Struvite precipitation -- 7.3.3 Nitrogen recovery by physical processes -- 7.3.3.1 Adsorption and ion exchange -- 7.3.3.2 Membrane processes -- 7.4 Challenges and future prospects of the nitrogen recovery technologies -- 7.4.1 Biological processes -- 7.4.2 Chemical processes -- 7.4.3 Physical processes -- 7.5 Conclusion -- References -- 8 Sulfate/sulfur recovery from municipal wastewater treatment plants -- 8.1 Introduction -- 8.2 Chemical precipitation -- 8.2.1 Limitations -- 8.3 Ion exchange -- 8.3.1 Challenges -- 8.4 Membrane separation -- 8.4.1 Principle -- 8.4.2 Challenges -- 8.5 Biological sulfur/sulfide removal -- 8.5.1 Challenges -- 8.5.2 Future perspectives -- 8.6 Summary -- References -- 9 Nitrogen recovery from the municipal wastewater treatment plants -- 9.1 Introduction -- 9.1.1 Wastewater treatment plants -- 9.1.1.1 Preliminary or pretreatment -- 9.1.1.2 Primary or physical treatment -- 9.1.1.3 Secondary or biological treatment -- 9.1.1.4 Tertiary or advanced treatment -- 9.1.1.5 Final treatment -- 9.1.2 Nitrogen recovery and reuse: technologies and strategies -- 9.2 Methods -- 9.2.1 Ion-exchange and adsorption-based methods -- 9.2.2 Air stripping process -- 9.2.3 Membrane bioreactor-based recovery -- 9.2.4 Advance oxidation process -- 9.2.5 Bioelectrochemical systems. , 9.2.6 Microbial electrochemical cells -- 9.2.7 Phototrophic systems -- 9.2.8 Nitrogen recovery by microalgae -- 9.2.9 Struvite precipitation -- 9.2.10 Analytical method -- 9.3 Recent developments in nitrogen recovery -- 9.4 The future of nitrogen recovery -- 9.5 Conclusion -- References -- 10 Thermochemical processes for resource recovery from municipal wastewater treatment plants -- 10.1 Introduction -- 10.2 Thermochemical process -- 10.2.1 Pyrolysis -- 10.2.1.1 Proximate and ultimate analysis of biochar -- 10.2.1.2 Proximate and ultimate analysis of bio-oil -- 10.2.2 Gasification -- 10.2.3 Combustion -- 10.2.4 Hydrothermal technology for wastewater biosludge solubilization -- 10.3 Other thermo-coupled chemical technologies -- 10.4 Techno-economical analysis -- 10.5 Challenges and future perspective -- 10.6 Conclusion -- References -- 11 Nitrogenous fuels recovery from municipal wastewater treatment plants -- Abbreviations -- 11.1 Introduction -- 11.1.1 Types of wastewater -- 11.1.1.1 Domestic, municipal, or household wastewater -- 11.1.1.2 Industrial wastewater -- 11.2 Methods (removal of nitrogenous wastes from wastewater) -- 11.2.1 Physical methods -- 11.2.1.1 Reverse osmosis -- 11.2.1.2 Ion exchange -- 11.2.1.3 Electrodialysis -- 11.2.2 Chemical methods -- 11.2.2.1 Fenton oxidation -- 11.2.2.2 Ozonation -- 11.2.2.3 Electrochemical oxidation -- 11.2.2.3.1 Microorganisms involved in bioelectrochemical systems -- 11.2.3 Biological methods -- 11.2.3.1 Anammox -- 11.2.3.1.1 Anammox microorganisms -- 11.2.3.2 Nitrification -- 11.2.3.2.1 Nitrification microorganisms -- 11.2.3.3 Denitrification -- 11.2.3.3.1 Denitrification microorganisms -- 11.3 Recent development and research -- 11.3.1 Nitrogen recovery from wastewater -- 11.3.1.1 By Bioelectrochemical system -- 11.3.1.2 By microalgae and cyanobacteria -- 11.3.1.3 By chemical processes. , 11.3.1.3.1 Air stripping.
    Weitere Ausg.: Print version: Sillanpaa, Mika Resource Recovery in Municipal Waste Waters San Diego : Elsevier,c2023 ISBN 9780323993487
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edoccha_9961191486002883
    Umfang: 1 online resource (419 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323993494 , 0323993494
    Inhalt: Resource Recovery in Municipal Waste Waters provides various municipal wastewater remediation methods and techniques to recover materials from such wastewaters. Sections cover the basic principles of resource recovery, along with the recovery of methane, phosphorous, electricity and metals. The volume covers comprehensive cutting-edge techniques for resource recovery and municipal wastewater treatment and reports on new findings in these areas. It also introduces polluted waters as new and sustainable sources rather than seeing wastewaters as a source of hazardous organic and inorganic matters. The main advantages and disadvantages of both wastewater/polluted water treatment and recovery are also discussed.
    Anmerkung: Front Cover -- Resource Recovery in Municipal Waste Waters -- Copyright Page -- Contents -- List of contributors -- 1 Microalgae-based processes for resource recovery from municipal wastewater -- Abbreviations -- 1.1 Introduction -- 1.2 Microalgal species used for wastewater treatment -- 1.3 Cultivation modes of microalgae -- 1.3.1 Photoautotrophic cultivation -- 1.3.2 Heterotrophic cultivation -- 1.3.3 Mixotrophic cultivation -- 1.4 Nutrients recovery from municipal wastewater by microalgae -- 1.4.1 Recovery of nitrogen -- 1.4.2 Recovery of phosphorus -- 1.4.3 Recovery of organic carbon -- 1.5 Pollutants removal mechanisms by microalgae -- 1.5.1 Biosorption -- 1.5.2 Bioaccumulation -- 1.5.3 Biodegradation -- 1.6 Biomass harvesting techniques -- 1.6.1 Gravity sedimentation -- 1.6.2 Flocculation and coagulation -- 1.6.3 Flotation -- 1.6.4 Centrifugation -- 1.6.5 Filtration -- 1.7 Current challenges of microalgae-based technology and future perspectives -- 1.8 Conclusion -- References -- Further reading -- 2 Microalgae-based processes for resource recovery from municipal wastewater treatment plants -- 2.1 Introduction -- 2.1.1 Implantation of microalgae in wastewater treatment -- 2.1.2 Characteristics of microalgae species used in wastewater treatment -- 2.3 Microalgae role in wastewater treatment -- 2.4 Removal of nutrients from wastewater -- 2.4.1 Carbon removal -- 2.4.2 Nitrogen removal -- 2.4.3 Phosphorus removal -- 2.4.4 Removal of heavy metals -- 2.5 Strategies to enhance the removal of nutrients -- 2.5.1 Factors affecting microalgae-based nutrient removal -- 2.5.2 Cultivation system -- 2.5.3 pH effect -- 2.5.4 C/N/P ratio -- 2.5.5 Light Effect -- 2.5.6 Temperature -- 2.6 Bioremediation in wastewater treatment via microalgae -- 2.6.1 Microalgal treatment of wastewaters -- 2.6.2 Bioremediation of heavy metals. , 2.6.3 Bioremediation approaches in value-added products formation -- 2.6.3.1 Arsenic -- 2.6.3.2 Cadmium (Cd) -- 2.6.3.3 Chromium (Cr) -- 2.7 Economic feasibility of nutrient removal methods -- 2.7.1 Closed photobioreactors -- 2.7.2 Raceway pond system -- 2.8 Economic feasibility of microalgae cultivation -- 2.9 Challenges of implementing the proposed technology and future prospects -- References -- 3 Metal recovery from municipal wastewater treatment plants -- 3.1 Introduction -- 3.2 Various methods for metal recovery -- 3.2.1 Adsorption -- 3.2.2 Membrane filtration -- 3.2.3 Electrodialysis -- 3.2.4 Photocatalysis -- 3.2.5 Chemical precipitation -- 3.2.6 Wet-chemical treatment -- 3.2.7 Thermochemical process -- 3.2.8 Bioelectrochemical metal recovery method -- 3.3 Safe disposal of recovered metals -- 3.4 Challenges and future perspectives -- 3.5 Conclusion -- References -- 4 Hydrothermal processing for resource recovery from municipal wastewater treatment plants -- 4.1 Introduction -- 4.1.1 Hydrothermal processing -- 4.1.2 Types of hydrothermal processing -- 4.1.2.1 Thermal hydrolysis -- 4.1.2.2 Hydrothermal deconstruction (wet oxidation) -- 4.1.2.3 Hydrothermal carbonization -- 4.1.2.4 Hydrothermal liquefaction -- 4.1.3 Mechanisms -- 4.1.3.1 Chemical reactions -- 4.1.3.1.1 Free radical mechanism -- 4.1.3.1.2 Solubilization mechanism -- 4.1.3.1.3 Maillard reaction mechanism -- 4.1.3.2 Mass transfer -- 4.1.3.2.1 Solid-liquid mass transfer -- 4.1.3.2.2 Gas-liquid mass transfer -- 4.2 Methods -- 4.2.1 Opportunities for energy recovery -- 4.2.2 Opportunities for resource recovery -- 4.2.2.1 Fertiliser -- 4.2.2.2 Organic acid formation -- 4.2.2.2.1 Lactic acid -- 4.2.2.2.2 Acetic acid -- 4.3 Recent developments and research -- 4.3.1 Advanced thermal hydrolysis -- 4.3.2 Catalytic hydrothermal processing -- 4.4 Research gaps and future perspectives. , 4.4.1 Lack of fundamental data -- 4.4.2 Lack of process models -- 4.4.3 Technology readiness -- 4.4.4 Challenges and barriers to commercialization and solutions -- 4.5 Conclusion -- References -- 5 Phosphorous recovery from municipal wastewater -- 5.1 Introduction -- 5.2 P recovery from municipal wastewater -- 5.3 P Recovery technologies -- 5.3.1 Chemical methods -- 5.3.1.1 Chemical precipitation -- 5.3.1.1.1 Calcium -- 5.3.1.1.2 Fe salts -- 5.3.1.1.3 Aluminum -- 5.3.1.2 Recovery as struvite -- 5.3.1.3 Adsorption method -- 5.3.2 Physical treatment methods -- 5.3.2.1 Membrane separation technology -- 5.3.2.1.1 Nanofiltration -- 5.3.2.1.2 Forward osmosis -- 5.3.2.1.3 Electrodialysis -- 5.3.2.2 Thermal treatment -- 5.3.2.2.1 Incineration -- 5.3.2.2.2 Pyrolysis -- 5.3.2.2.3 Hydrothermal carbonization -- 5.3.2.2.4 Gasification -- 5.3.3 Biological treatment -- 5.3.3.1 Enhanced biological phosphorous removal -- 5.3.3.2 Microalgal -- 5.3.3.3 Microalgae-bacteria -- 5.3.3.4 Constructed wetlands -- 5.4 Discussion -- 5.5 Challenges and way forward -- 5.6 Conclusion -- Acknowledgment -- References -- 6 Insight into technologies for phosphorus recovery from municipal wastewater treatment plants -- 6.1 Introduction -- 6.1.1 Effects of P on the environment -- 6.2 Phosphorus recovery: municipal wastewater treatment plant -- 6.2.1 Aqueous phase recovery -- 6.2.2 Sewage sludge recovery -- 6.2.3 Sewage sludge ash recovery -- 6.3 Techniques for P recovery from the municipal wastewater treatment plant -- 6.3.1 Crystallization and precipitation -- 6.3.2 Wet chemical process -- 6.3.3 Thermochemical process -- 6.3.4 Biological process -- 6.3.5 Others -- 6.4 Phosphorus recovery technologies -- 6.4.1 Technologies for recovery of P from the aqueous phase -- 6.4.2 Technologies for recovery of P from sewage sludge -- 6.4.3 Technologies for recovery of P from sewage sludge ash. , 6.5 Research gaps and future perspectives -- 6.6 Conclusion -- References -- 7 Technologies for nitrogen recovery from municipal wastewater -- 7.1 Introduction -- 7.2 Sources of nitrogen in municipal wastewater -- 7.3 Nitrogen recovery from municipal wastewater -- 7.3.1 Nitrogen recovery by biological processes -- 7.3.1.1 Bioelectrochemical systems -- 7.3.1.2 Nitrogen assimilation by microalgae and cyanobacteria -- 7.3.1.3 Anaerobic membrane bioreactor -- 7.3.1.4 Waste activated sludge -- 7.3.2 Nitrogen recovery by chemical processes -- 7.3.2.1 Air stripping -- 7.3.2.2 Struvite precipitation -- 7.3.3 Nitrogen recovery by physical processes -- 7.3.3.1 Adsorption and ion exchange -- 7.3.3.2 Membrane processes -- 7.4 Challenges and future prospects of the nitrogen recovery technologies -- 7.4.1 Biological processes -- 7.4.2 Chemical processes -- 7.4.3 Physical processes -- 7.5 Conclusion -- References -- 8 Sulfate/sulfur recovery from municipal wastewater treatment plants -- 8.1 Introduction -- 8.2 Chemical precipitation -- 8.2.1 Limitations -- 8.3 Ion exchange -- 8.3.1 Challenges -- 8.4 Membrane separation -- 8.4.1 Principle -- 8.4.2 Challenges -- 8.5 Biological sulfur/sulfide removal -- 8.5.1 Challenges -- 8.5.2 Future perspectives -- 8.6 Summary -- References -- 9 Nitrogen recovery from the municipal wastewater treatment plants -- 9.1 Introduction -- 9.1.1 Wastewater treatment plants -- 9.1.1.1 Preliminary or pretreatment -- 9.1.1.2 Primary or physical treatment -- 9.1.1.3 Secondary or biological treatment -- 9.1.1.4 Tertiary or advanced treatment -- 9.1.1.5 Final treatment -- 9.1.2 Nitrogen recovery and reuse: technologies and strategies -- 9.2 Methods -- 9.2.1 Ion-exchange and adsorption-based methods -- 9.2.2 Air stripping process -- 9.2.3 Membrane bioreactor-based recovery -- 9.2.4 Advance oxidation process -- 9.2.5 Bioelectrochemical systems. , 9.2.6 Microbial electrochemical cells -- 9.2.7 Phototrophic systems -- 9.2.8 Nitrogen recovery by microalgae -- 9.2.9 Struvite precipitation -- 9.2.10 Analytical method -- 9.3 Recent developments in nitrogen recovery -- 9.4 The future of nitrogen recovery -- 9.5 Conclusion -- References -- 10 Thermochemical processes for resource recovery from municipal wastewater treatment plants -- 10.1 Introduction -- 10.2 Thermochemical process -- 10.2.1 Pyrolysis -- 10.2.1.1 Proximate and ultimate analysis of biochar -- 10.2.1.2 Proximate and ultimate analysis of bio-oil -- 10.2.2 Gasification -- 10.2.3 Combustion -- 10.2.4 Hydrothermal technology for wastewater biosludge solubilization -- 10.3 Other thermo-coupled chemical technologies -- 10.4 Techno-economical analysis -- 10.5 Challenges and future perspective -- 10.6 Conclusion -- References -- 11 Nitrogenous fuels recovery from municipal wastewater treatment plants -- Abbreviations -- 11.1 Introduction -- 11.1.1 Types of wastewater -- 11.1.1.1 Domestic, municipal, or household wastewater -- 11.1.1.2 Industrial wastewater -- 11.2 Methods (removal of nitrogenous wastes from wastewater) -- 11.2.1 Physical methods -- 11.2.1.1 Reverse osmosis -- 11.2.1.2 Ion exchange -- 11.2.1.3 Electrodialysis -- 11.2.2 Chemical methods -- 11.2.2.1 Fenton oxidation -- 11.2.2.2 Ozonation -- 11.2.2.3 Electrochemical oxidation -- 11.2.2.3.1 Microorganisms involved in bioelectrochemical systems -- 11.2.3 Biological methods -- 11.2.3.1 Anammox -- 11.2.3.1.1 Anammox microorganisms -- 11.2.3.2 Nitrification -- 11.2.3.2.1 Nitrification microorganisms -- 11.2.3.3 Denitrification -- 11.2.3.3.1 Denitrification microorganisms -- 11.3 Recent development and research -- 11.3.1 Nitrogen recovery from wastewater -- 11.3.1.1 By Bioelectrochemical system -- 11.3.1.2 By microalgae and cyanobacteria -- 11.3.1.3 By chemical processes. , 11.3.1.3.1 Air stripping.
    Weitere Ausg.: Print version: Sillanpaa, Mika Resource Recovery in Municipal Waste Waters San Diego : Elsevier,c2023 ISBN 9780323993487
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    edocfu_9961191486002883
    Umfang: 1 online resource (419 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323993494 , 0323993494
    Inhalt: Resource Recovery in Municipal Waste Waters provides various municipal wastewater remediation methods and techniques to recover materials from such wastewaters. Sections cover the basic principles of resource recovery, along with the recovery of methane, phosphorous, electricity and metals. The volume covers comprehensive cutting-edge techniques for resource recovery and municipal wastewater treatment and reports on new findings in these areas. It also introduces polluted waters as new and sustainable sources rather than seeing wastewaters as a source of hazardous organic and inorganic matters. The main advantages and disadvantages of both wastewater/polluted water treatment and recovery are also discussed.
    Anmerkung: Front Cover -- Resource Recovery in Municipal Waste Waters -- Copyright Page -- Contents -- List of contributors -- 1 Microalgae-based processes for resource recovery from municipal wastewater -- Abbreviations -- 1.1 Introduction -- 1.2 Microalgal species used for wastewater treatment -- 1.3 Cultivation modes of microalgae -- 1.3.1 Photoautotrophic cultivation -- 1.3.2 Heterotrophic cultivation -- 1.3.3 Mixotrophic cultivation -- 1.4 Nutrients recovery from municipal wastewater by microalgae -- 1.4.1 Recovery of nitrogen -- 1.4.2 Recovery of phosphorus -- 1.4.3 Recovery of organic carbon -- 1.5 Pollutants removal mechanisms by microalgae -- 1.5.1 Biosorption -- 1.5.2 Bioaccumulation -- 1.5.3 Biodegradation -- 1.6 Biomass harvesting techniques -- 1.6.1 Gravity sedimentation -- 1.6.2 Flocculation and coagulation -- 1.6.3 Flotation -- 1.6.4 Centrifugation -- 1.6.5 Filtration -- 1.7 Current challenges of microalgae-based technology and future perspectives -- 1.8 Conclusion -- References -- Further reading -- 2 Microalgae-based processes for resource recovery from municipal wastewater treatment plants -- 2.1 Introduction -- 2.1.1 Implantation of microalgae in wastewater treatment -- 2.1.2 Characteristics of microalgae species used in wastewater treatment -- 2.3 Microalgae role in wastewater treatment -- 2.4 Removal of nutrients from wastewater -- 2.4.1 Carbon removal -- 2.4.2 Nitrogen removal -- 2.4.3 Phosphorus removal -- 2.4.4 Removal of heavy metals -- 2.5 Strategies to enhance the removal of nutrients -- 2.5.1 Factors affecting microalgae-based nutrient removal -- 2.5.2 Cultivation system -- 2.5.3 pH effect -- 2.5.4 C/N/P ratio -- 2.5.5 Light Effect -- 2.5.6 Temperature -- 2.6 Bioremediation in wastewater treatment via microalgae -- 2.6.1 Microalgal treatment of wastewaters -- 2.6.2 Bioremediation of heavy metals. , 2.6.3 Bioremediation approaches in value-added products formation -- 2.6.3.1 Arsenic -- 2.6.3.2 Cadmium (Cd) -- 2.6.3.3 Chromium (Cr) -- 2.7 Economic feasibility of nutrient removal methods -- 2.7.1 Closed photobioreactors -- 2.7.2 Raceway pond system -- 2.8 Economic feasibility of microalgae cultivation -- 2.9 Challenges of implementing the proposed technology and future prospects -- References -- 3 Metal recovery from municipal wastewater treatment plants -- 3.1 Introduction -- 3.2 Various methods for metal recovery -- 3.2.1 Adsorption -- 3.2.2 Membrane filtration -- 3.2.3 Electrodialysis -- 3.2.4 Photocatalysis -- 3.2.5 Chemical precipitation -- 3.2.6 Wet-chemical treatment -- 3.2.7 Thermochemical process -- 3.2.8 Bioelectrochemical metal recovery method -- 3.3 Safe disposal of recovered metals -- 3.4 Challenges and future perspectives -- 3.5 Conclusion -- References -- 4 Hydrothermal processing for resource recovery from municipal wastewater treatment plants -- 4.1 Introduction -- 4.1.1 Hydrothermal processing -- 4.1.2 Types of hydrothermal processing -- 4.1.2.1 Thermal hydrolysis -- 4.1.2.2 Hydrothermal deconstruction (wet oxidation) -- 4.1.2.3 Hydrothermal carbonization -- 4.1.2.4 Hydrothermal liquefaction -- 4.1.3 Mechanisms -- 4.1.3.1 Chemical reactions -- 4.1.3.1.1 Free radical mechanism -- 4.1.3.1.2 Solubilization mechanism -- 4.1.3.1.3 Maillard reaction mechanism -- 4.1.3.2 Mass transfer -- 4.1.3.2.1 Solid-liquid mass transfer -- 4.1.3.2.2 Gas-liquid mass transfer -- 4.2 Methods -- 4.2.1 Opportunities for energy recovery -- 4.2.2 Opportunities for resource recovery -- 4.2.2.1 Fertiliser -- 4.2.2.2 Organic acid formation -- 4.2.2.2.1 Lactic acid -- 4.2.2.2.2 Acetic acid -- 4.3 Recent developments and research -- 4.3.1 Advanced thermal hydrolysis -- 4.3.2 Catalytic hydrothermal processing -- 4.4 Research gaps and future perspectives. , 4.4.1 Lack of fundamental data -- 4.4.2 Lack of process models -- 4.4.3 Technology readiness -- 4.4.4 Challenges and barriers to commercialization and solutions -- 4.5 Conclusion -- References -- 5 Phosphorous recovery from municipal wastewater -- 5.1 Introduction -- 5.2 P recovery from municipal wastewater -- 5.3 P Recovery technologies -- 5.3.1 Chemical methods -- 5.3.1.1 Chemical precipitation -- 5.3.1.1.1 Calcium -- 5.3.1.1.2 Fe salts -- 5.3.1.1.3 Aluminum -- 5.3.1.2 Recovery as struvite -- 5.3.1.3 Adsorption method -- 5.3.2 Physical treatment methods -- 5.3.2.1 Membrane separation technology -- 5.3.2.1.1 Nanofiltration -- 5.3.2.1.2 Forward osmosis -- 5.3.2.1.3 Electrodialysis -- 5.3.2.2 Thermal treatment -- 5.3.2.2.1 Incineration -- 5.3.2.2.2 Pyrolysis -- 5.3.2.2.3 Hydrothermal carbonization -- 5.3.2.2.4 Gasification -- 5.3.3 Biological treatment -- 5.3.3.1 Enhanced biological phosphorous removal -- 5.3.3.2 Microalgal -- 5.3.3.3 Microalgae-bacteria -- 5.3.3.4 Constructed wetlands -- 5.4 Discussion -- 5.5 Challenges and way forward -- 5.6 Conclusion -- Acknowledgment -- References -- 6 Insight into technologies for phosphorus recovery from municipal wastewater treatment plants -- 6.1 Introduction -- 6.1.1 Effects of P on the environment -- 6.2 Phosphorus recovery: municipal wastewater treatment plant -- 6.2.1 Aqueous phase recovery -- 6.2.2 Sewage sludge recovery -- 6.2.3 Sewage sludge ash recovery -- 6.3 Techniques for P recovery from the municipal wastewater treatment plant -- 6.3.1 Crystallization and precipitation -- 6.3.2 Wet chemical process -- 6.3.3 Thermochemical process -- 6.3.4 Biological process -- 6.3.5 Others -- 6.4 Phosphorus recovery technologies -- 6.4.1 Technologies for recovery of P from the aqueous phase -- 6.4.2 Technologies for recovery of P from sewage sludge -- 6.4.3 Technologies for recovery of P from sewage sludge ash. , 6.5 Research gaps and future perspectives -- 6.6 Conclusion -- References -- 7 Technologies for nitrogen recovery from municipal wastewater -- 7.1 Introduction -- 7.2 Sources of nitrogen in municipal wastewater -- 7.3 Nitrogen recovery from municipal wastewater -- 7.3.1 Nitrogen recovery by biological processes -- 7.3.1.1 Bioelectrochemical systems -- 7.3.1.2 Nitrogen assimilation by microalgae and cyanobacteria -- 7.3.1.3 Anaerobic membrane bioreactor -- 7.3.1.4 Waste activated sludge -- 7.3.2 Nitrogen recovery by chemical processes -- 7.3.2.1 Air stripping -- 7.3.2.2 Struvite precipitation -- 7.3.3 Nitrogen recovery by physical processes -- 7.3.3.1 Adsorption and ion exchange -- 7.3.3.2 Membrane processes -- 7.4 Challenges and future prospects of the nitrogen recovery technologies -- 7.4.1 Biological processes -- 7.4.2 Chemical processes -- 7.4.3 Physical processes -- 7.5 Conclusion -- References -- 8 Sulfate/sulfur recovery from municipal wastewater treatment plants -- 8.1 Introduction -- 8.2 Chemical precipitation -- 8.2.1 Limitations -- 8.3 Ion exchange -- 8.3.1 Challenges -- 8.4 Membrane separation -- 8.4.1 Principle -- 8.4.2 Challenges -- 8.5 Biological sulfur/sulfide removal -- 8.5.1 Challenges -- 8.5.2 Future perspectives -- 8.6 Summary -- References -- 9 Nitrogen recovery from the municipal wastewater treatment plants -- 9.1 Introduction -- 9.1.1 Wastewater treatment plants -- 9.1.1.1 Preliminary or pretreatment -- 9.1.1.2 Primary or physical treatment -- 9.1.1.3 Secondary or biological treatment -- 9.1.1.4 Tertiary or advanced treatment -- 9.1.1.5 Final treatment -- 9.1.2 Nitrogen recovery and reuse: technologies and strategies -- 9.2 Methods -- 9.2.1 Ion-exchange and adsorption-based methods -- 9.2.2 Air stripping process -- 9.2.3 Membrane bioreactor-based recovery -- 9.2.4 Advance oxidation process -- 9.2.5 Bioelectrochemical systems. , 9.2.6 Microbial electrochemical cells -- 9.2.7 Phototrophic systems -- 9.2.8 Nitrogen recovery by microalgae -- 9.2.9 Struvite precipitation -- 9.2.10 Analytical method -- 9.3 Recent developments in nitrogen recovery -- 9.4 The future of nitrogen recovery -- 9.5 Conclusion -- References -- 10 Thermochemical processes for resource recovery from municipal wastewater treatment plants -- 10.1 Introduction -- 10.2 Thermochemical process -- 10.2.1 Pyrolysis -- 10.2.1.1 Proximate and ultimate analysis of biochar -- 10.2.1.2 Proximate and ultimate analysis of bio-oil -- 10.2.2 Gasification -- 10.2.3 Combustion -- 10.2.4 Hydrothermal technology for wastewater biosludge solubilization -- 10.3 Other thermo-coupled chemical technologies -- 10.4 Techno-economical analysis -- 10.5 Challenges and future perspective -- 10.6 Conclusion -- References -- 11 Nitrogenous fuels recovery from municipal wastewater treatment plants -- Abbreviations -- 11.1 Introduction -- 11.1.1 Types of wastewater -- 11.1.1.1 Domestic, municipal, or household wastewater -- 11.1.1.2 Industrial wastewater -- 11.2 Methods (removal of nitrogenous wastes from wastewater) -- 11.2.1 Physical methods -- 11.2.1.1 Reverse osmosis -- 11.2.1.2 Ion exchange -- 11.2.1.3 Electrodialysis -- 11.2.2 Chemical methods -- 11.2.2.1 Fenton oxidation -- 11.2.2.2 Ozonation -- 11.2.2.3 Electrochemical oxidation -- 11.2.2.3.1 Microorganisms involved in bioelectrochemical systems -- 11.2.3 Biological methods -- 11.2.3.1 Anammox -- 11.2.3.1.1 Anammox microorganisms -- 11.2.3.2 Nitrification -- 11.2.3.2.1 Nitrification microorganisms -- 11.2.3.3 Denitrification -- 11.2.3.3.1 Denitrification microorganisms -- 11.3 Recent development and research -- 11.3.1 Nitrogen recovery from wastewater -- 11.3.1.1 By Bioelectrochemical system -- 11.3.1.2 By microalgae and cyanobacteria -- 11.3.1.3 By chemical processes. , 11.3.1.3.1 Air stripping.
    Weitere Ausg.: Print version: Sillanpaa, Mika Resource Recovery in Municipal Waste Waters San Diego : Elsevier,c2023 ISBN 9780323993487
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0323999492?
Meinten Sie 0313393494?
Meinten Sie 0323992404?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz