Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Taylor & Francis | London :Routledge, Taylor & Francis Group,
    UID:
    almafu_9959269209802883
    Umfang: 1 online resource (xiv, 269 pages) : , digital, PDF file(s).
    Ausgabe: 1 ed.
    ISBN: 9781000761016 , 1000761010 , 9781000761085 , 1000761088 , 9780367222222 , 0367222221 , 9780429273872 , 0429273878
    Serie: European Association of Methodology series
    Inhalt: Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This uniquebook provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapterillustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. Thisessential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect.The statistical models in the book rangefrom the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods.All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.
    Anmerkung: Introduction (Van de Schootand Miočević) List of Symbols Part I: Bayesian solutions 1. Introduction to Bayesian statistics(Miočević, Levy,and van de Schoot) 2.The role of exchangeability in sequential updating of findings from small studies and the challenges of identifying exchangeable data sets (Miočević, Levy,and Savord) 3. A tutorial on using the WAMBS checklist to avoid the misuse of Bayesian statistics(van de Schoot, Veen, Smeets, Winter,and Depaoli) 4. The importance of collaboration in Bayesian analyses with small samples (Veenand Egberts) 5. A tutorial on Bayesian penalized regression with shrinkage priors for small sample sizes (van Erp) PartII: n=1 6. One by one: the designand analysis of replicated randomized single-case experiments(Onghena) 7. Single-case experimental designs in clinical intervention research (Maricand van der Werff) 8. How to improve the estimation of a specific examinee's (n=1)math ability when test data are limited(Lekand Arts) 9. Combining evidence over multiple individual analyses(Klaassen) 10. Going multivariate in clinical trial studies: a Bayesian framework for multiple binary outcomes(Kavelaars) PartIII: Complex hypotheses and models 11. An introduction to restriktor: evaluating informative hypotheses for linear models (VanbrabantandRosseel) 12. Testing replication with small samples: applications to ANOVA(Zondervan-Zwijnenburgand Rijshouwer) 13. Small sample meta-analyses: exploring heterogeneity using MetaForest (van Lissa) 14. Item parcels as indicators: why, when, and how to use them in small sample research(Rioux, Stickley, Odejimi,and Little) 15. Small samples in multilevel modeling(Hoxand McNeish) 16. Small sample solutions for structural equation modeling(Rosseel) 17. SEM with small samples: two-step modeling and factor score regression versus Bayesian estimation with informative priors (Smidand Rosseel) 18. Important yet unheeded: some small sample issues that are often overlooked(Hox) Index , Also available in print form. , English
    Weitere Ausg.: Print version: ISBN 9780367221898
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    London ; New York : Routledge, Taylor & Francis Group
    UID:
    b3kat_BV046651191
    Umfang: 1 Online-Ressource (xiv, 269 Seiten)
    ISBN: 9780429273872
    Serie: EAM book series
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe, hardback ISBN 978-0-367-22189-8
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe, paperback ISBN 978-0-367-22222-2
    Sprache: Englisch
    Fachgebiete: Wirtschaftswissenschaften
    RVK:
    Schlagwort(e): Stichprobe ; Statistische Analyse ; Stichprobenumfang ; Kleinheit ; Sozialwissenschaften ; Verhaltensforschung ; Forschungsmethode ; Statistik ; Konferenzschrift ; Aufsatzsammlung
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Abingdon, Oxon : Routledge, an imprint of the Taylor & Francis Group, an informa business,
    UID:
    gbv_1780090595
    Umfang: 1 online resource (284 pages)
    ISBN: 9780429273872 , 0429273878 , 9781000761085 , 1000761088 , 9781000760941 , 1000760944 , 9781000761016 , 1000761010
    Serie: European Association of Methodology series
    Inhalt: Introduction (Van de Schootand Miočević) List of Symbols Part I: Bayesian solutions 1. Introduction to Bayesian statistics(Miočević, Levy,and van de Schoot) 2.The role of exchangeability in sequential updating of findings from small studies and the challenges of identifying exchangeable data sets (Miočević, Levy,and Savord) 3. A tutorial on using the WAMBS checklist to avoid the misuse of Bayesian statistics(van de Schoot, Veen, Smeets, Winter,and Depaoli) 4. The importance of collaboration in Bayesian analyses with small samples (Veenand Egberts) 5. A tutorial on Bayesian penalized regression with shrinkage priors for small sample sizes (van Erp) PartII: n=1 6. One by one: the designand analysis of replicated randomized single-case experiments(Onghena) 7. Single-case experimental designs in clinical intervention research (Maricand van der Werff) 8. How to improve the estimation of a specific examinee's (n=1)math ability when test data are limited(Lekand Arts) 9. Combining evidence over multiple individual analyses(Klaassen) 10. Going multivariate in clinical trial studies: a Bayesian framework for multiple binary outcomes(Kavelaars) PartIII: Complex hypotheses and models 11. An introduction to restriktor: evaluating informative hypotheses for linear models (VanbrabantandRosseel) 12. Testing replication with small samples: applications to ANOVA(Zondervan-Zwijnenburgand Rijshouwer) 13. Small sample meta-analyses: exploring heterogeneity using MetaForest (van Lissa) 14. Item parcels as indicators: why, when, and how to use them in small sample research(Rioux, Stickley, Odejimi,and Little) 15. Small samples in multilevel modeling(Hoxand McNeish) 16. Small sample solutions for structural equation modeling(Rosseel) 17. SEM with small samples: two-step modeling and factor score regression versus Bayesian estimation with informative priors (Smidand Rosseel) 18. Important yet unheeded: some small sample issues that are often overlooked(Hox) Index
    Anmerkung: Includes bibliographical references and index
    Weitere Ausg.: ISBN 9780367221898
    Weitere Ausg.: ISBN 9780367222222
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780367221898
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    [Erscheinungsort nicht ermittelbar] : Taylor & Francis
    UID:
    gbv_1778466958
    Umfang: 1 Online-Ressource (284 p.)
    ISBN: 9780429273872 , 0429273878 , 9781000761085 , 1000761088 , 9781000760941 , 1000760944 , 9781000761016 , 1000761010
    Inhalt: Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics
    Anmerkung: English
    Weitere Ausg.: ISBN 9780367221898
    Weitere Ausg.: ISBN 9780367222222
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    gbv_1675890587
    Umfang: xiv, 269 Seiten , Illustrationen, Diagramme
    ISBN: 9780367221898 , 9780367222222
    Serie: European Association of Methodology series
    Anmerkung: Literaturangaben
    Weitere Ausg.: ISBN 9780429273872
    Sprache: Englisch
    Schlagwort(e): Sozialwissenschaften ; Verhaltensforschung ; Forschungsmethode ; Statistische Analyse ; Stichprobenumfang ; Kleinheit ; Statistik
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0367222361?
Meinten Sie 0367222205?
Meinten Sie 0367225220?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz