Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Schlagwörter
Zugriff
  • 1
    UID:
    b3kat_BV020033306
    Umfang: XIV, 324 S. , graph. Darst.
    ISBN: 0387001522 , 9780387250618 , 9780387001524
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 0-387-25061-1
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Maschinelles Lernen
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    b3kat_BV022367987
    Umfang: 1 Online-Ressource (XIV, 324 S.) , graph. Darst.
    ISBN: 0387001522 , 0387250611 , 9780387250618 , 9780387250618 , 9780387001524
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Maschinelles Lernen
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almahu_9949972420002882
    Umfang: XVI, 324 p. 62 illus. , online resource.
    Ausgabe: 1st ed. 2005.
    ISBN: 9780387250618
    Inhalt: Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability. This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models called repetitive structures, which originate in the algorithmic theory of randomness and statistical physics. The approach is flexible enough to incorporate most existing methods of machine learning, including newer methods such as boosting and support vector machines and older methods such as nearest neighbors and the bootstrap. Topics and Features: * Describes how conformal predictors yield accurate and reliable predictions, complemented with quantitative measures of their accuracy and reliability * Handles both classification and regression problems * Explains how to apply the new algorithms to real-world data sets * Demonstrates the infeasibility of some standard prediction tasks * Explains connections with Kolmogorov's algorithmic randomness, recent work in machine learning, and older work in statistics * Develops new methods of probability forecasting and shows how to use them for prediction in causal networks Researchers in computer science, statistics, and artificial intelligence will find the book an authoritative and rigorous treatment of someof the most promising new developments in machine learning. Practitioners and students in all areas of research that use quantitative prediction or machine learning will learn about important new methods.
    Anmerkung: Conformal prediction -- Classification with conformal predictors -- Modifications of conformal predictors -- Probabilistic prediction I: impossibility results -- Probabilistic prediction II: Venn predictors -- Beyond exchangeability -- On-line compression modeling I: conformal prediction -- On-line compression modeling II: Venn prediction -- Perspectives and contrasts.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9780387001524
    Weitere Ausg.: Printed edition: ISBN 9780387500720
    Weitere Ausg.: Printed edition: ISBN 9781441934710
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 038705152x?
Meinten Sie 0387001255?
Meinten Sie 0387001352?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz