Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
  • 1
    UID:
    almahu_9949983337902882
    Format: 1 online resource (546 pages)
    Edition: First edition.
    ISBN: 9780443135804 , 0443135800
    Content: This book focuses on the study and development of bio-derived carbon materials, emphasizing their synthesis, applications, and challenges. It explores the historical evolution of carbon nanomaterials, the significance of bio-derived carbon, and the various methods used for their synthesis, such as pyrolysis and chemical vapor deposition. The book also discusses the types of bio-derived carbon, including carbon nanotubes and graphene, and their applications in fields such as biomedicine and environmental science. Additionally, the text addresses the challenges faced in the research and development of these materials and considers future prospects for innovation. Aimed at practitioners and researchers in chemical engineering and materials science, the book serves as a comprehensive guide to understanding bio-derived carbon materials.
    Note: Front Cover -- Bio-derived Carbon Nanostructures -- Copyright Page -- Contents -- List of contributors -- I Introduction to bio-derived carbon nanostructures -- 1. Introduction to bio-derived carbon nanostructures -- 1.1 Introduction -- 1.1.1 Definition of bio-derived carbon nanostructures -- 1.1.2 Importance and applications in nanotechnology -- 1.1.3 Overview of chapter contents -- 1.2 Historical perspectives -- 1.2.1 Early discoveries and developments in carbon nanomaterials -- 1.2.2 Evolution of bio-derived approaches -- 1.3 Types of bio-derived carbon nanostructures -- 1.3.1 Carbon nanotubes from biomass -- 1.3.2 Graphene derived from biological sources -- 1.4 Synthesis methods -- 1.4.1 Pyrolysis and carbonization techniques -- 1.4.2 Chemical vapor deposition approaches -- 1.4.3 Biofabrication methods -- 1.5 Applications -- 1.5.1 Biomedical applications -- 1.5.2 Environmental and energy-related applications -- 1.6 Challenges and future directions -- 1.6.1 Current challenges in bio-derived carbon nanostructure research -- 1.6.2 Prospects for future development and innovation -- 1.7 Conclusions -- References -- 2. Bio-based raw materials for preparation of carbon nanostructures -- 2.1 Introduction -- 2.2 Carbon-based materials and their properties -- 2.2.1 Graphene -- 2.2.2 Carbon nanotubes -- 2.2.3 Fullerenes -- 2.2.4 Quantum dots -- 2.3 Challenges and drawbacks of existing graphene developments -- 2.3.1 Transition to bio-based materials for synthesis of carbon-based materials -- 2.3.2 Carbon-based nanomaterial obtained from bio-based and chemical resources -- 2.4 Bio-derived carbon-based nanomaterials -- 2.4.1 Synthesis and development of bio-derived carbon-based nanomaterials -- 2.4.1.1 Microwave irradiation method -- 2.4.1.2 Pyrolysis of biomass -- 2.4.1.2.1 Steam pyrolysis -- 2.4.1.2.2 Spray pyrolysis -- 2.4.1.3 Hydrothermal carbonization. , 2.4.1.4 Ionothermal carbonization -- 2.4.2 Classification of bio-based raw materials and selection of feedstock -- 2.4.2.1 Lignin waste -- 2.4.2.2 Oil palm -- 2.4.2.3 Rice husk -- 2.4.2.4 Plant material -- 2.4.2.5 Animal waste -- 2.5 Applications of bio-derived carbon material and composites -- 2.5.1 Electrochemical sensor applications -- 2.5.2 Energy storage applications -- 2.5.3 Low-mass polymer composites -- 2.5.4 Energy conversion devices -- 2.6 Emerging opportunities and conclusions -- References -- 3. Role of structure of bio-based raw materials for their conversion to carbon nanostructures -- 3.1 Introduction -- 3.2 Bio-based raw materials: types and properties -- 3.3 Properties of bio-based materials -- 3.4 Relationship between raw materials structure and carbon nanostructures -- 3.5 Effect of chemical composition on carbonization and nanostructure -- 3.6 Influence of molecular structure on carbon nanostructure morphology -- 3.7 Impact of impurities on carbon nanostructure quality -- 3.8 Summary -- References -- 4. Zero-, one-, two-, and three-dimensional carbon nanostructures derived from bio-based material -- 4.1 Introduction -- 4.2 Overview of zero-, one-, two-, and three-dimensional carbon nanostructures -- 4.3 Bio-derived zero-, one-, two-, and three-dimensional carbon nanostructures -- 4.3.1 Zero-dimensional carbon nanostructures -- 4.3.1.1 Carbon dots -- 4.3.1.2 Graphene quantum dots -- 4.3.2 One-dimensional carbon nanostructures -- 4.3.2.1 Carbon nanotubes -- 4.3.2.2 Carbon nanofibers -- 4.3.3 Two-dimensional carbon nanostructures -- 4.3.3.1 Carbon nanosheets -- 4.3.4 Three-dimensional carbon nanostructures -- 4.3.4.1 Carbon nanoflowers -- 4.3.4.2 Carbon nanoonions -- 4.4 Summary -- References -- II Preparation of bio-derived carbon nanostructures -- 5. Fundamentals of conversion of bio-based material into carbon nanostructures. , 5.1 Introduction -- 5.2 Biomass precursor -- 5.2.1 Plant biomass -- 5.2.1.1 Cellulose -- 5.2.1.2 Hemicellulose -- 5.2.1.3 Lignin -- 5.2.1.4 Glucose -- 5.2.2 Animal biomass -- 5.2.2.1 Protein -- 5.2.2.2 Chitin -- 5.2.2.3 Chitosan -- 5.3 Lignocellulosic biomass pretreatment -- 5.3.1 Physical method -- 5.3.1.1 Mechanical extrusion pretreatment -- 5.3.1.2 Milling pretreatment -- 5.3.1.3 Ultrasound-assisted pretreatment -- 5.3.1.4 Microwave-assisted pretreatment -- 5.3.2 Chemical pretreatment method -- 5.3.2.1 Alkali pretreatment -- 5.3.2.2 Acidic pretreatment -- 5.4 Nanocarbon from different biomass -- 5.4.1 Sugarcane waste -- 5.4.2 Pineapple waste -- 5.4.3 Rice husk -- 5.4.4 Date palm -- 5.4.5 Rubber seeds -- 5.4.6 Coconut shells -- 5.4.7 Orange peels -- 5.5 Nanostructured biomass: an economic approach -- 5.6 Conclusion and future prospective -- References -- 6. Preparation of bioderived carbon nanostructures by pyrolysis -- 6.1 Introduction -- 6.2 Overview of pyrolysis process -- 6.2.1 Principle -- 6.2.2 Working -- 6.2.3 Construction -- 6.2.4 Types -- 6.2.4.1 Thermal pyrolysis -- 6.2.4.2 Microwave-assisted pyrolysis -- 6.2.4.3 Hydrothermal carbonization -- 6.2.5 Effect of temperature and pressure on biomass pyrolysis -- 6.3 Bio-derived carbon nanostructures -- 6.3.1 Carbon nanostructures -- 6.3.2 Preparation of carbon quantum dots by pyrolysis -- 6.3.3 Preparation of carbon nanotubes by pyrolysis -- 6.3.4 Preparation of carbon nanofibers by pyrolysis -- 6.3.5 Preparation of carbon nanosheets by pyrolysis -- 6.3.6 Effects of lignin content on the nanostructures -- 6.4 Summary -- References -- 7. Preparation of bio-derived carbon nanostructures by chemical vapor deposition -- 7.1 Introduction -- 7.1.1 Chemical vapor deposition -- 7.1.2 Laser ablation -- 7.1.3 Pyrolysis -- 7.2 Carbon from bio-based sources -- 7.2.1 Combustion -- 7.2.2 Calcination. , 7.2.3 Pyrolysis -- 7.2.4 Carbonization -- 7.3 Types of nanostructures -- 7.3.1 Carbon nanotubes -- 7.3.2 Carbon onion -- 7.3.3 Graphene -- 7.3.4 Fullerene -- 7.3.5 Nanodiamond -- 7.4 General methods of nanostructure synthesis -- 7.4.1 Chemical vapor deposition -- 7.4.2 Sol-gel synthesis -- 7.4.3 Template synthesis -- 7.5 Types of chemical vapor deposition -- 7.5.1 Atmospheric chemical vapor deposition -- 7.5.2 Low-pressure chemical vapor deposition -- 7.5.3 Aerosol-assisted chemical vapor deposition -- 7.5.4 Plasma-activated chemical vapor deposition -- 7.5.5 Microwave-assisted chemical vapor deposition -- 7.6 Parameters controlling the nanostructure formed by chemical vapor deposition -- 7.6.1 Operation conditions -- 7.6.2 Purification after chemical vapor deposition -- 7.7 Methods for preparation of bio-derived carbon nanostructures -- 7.7.1 Zero-dimensional nanostructures methodology -- 7.7.2 Electrolysis -- 7.8 Applications of bio-derived carbon nanostructures -- 7.8.1 Carbon nanostructures for supercapacitors -- 7.8.2 Fabrication approaches for flexible energy storage devices -- 7.8.3 Biomass-to-syngas conversion -- 7.8.4 Hydrogen storage -- 7.8.5 Carbon-based nanomaterials for chemical and biological sensing applications -- 7.9 Future perspective and challenges -- 7.9.1 Challenges -- 7.9.2 Chemical vapor deposition over other methods -- 7.10 Summary -- References -- 8. Preparation of bio-derived carbon nanostructures by mechanical and physical activation -- 8.1 Introduction -- 8.2 Mechanical activation -- 8.2.1 Process overview -- 8.2.2 Bio-derived carbon nanostructure synthesis via mechanical activation -- 8.3 Physical activation -- 8.3.1 Process overview (principle, technique, mechanism) -- 8.3.2 Bio-derived carbon nanostructure synthesis via physical activation -- 8.4 Limitations of mechanical and physical activation methods -- 8.5 Summary. , References -- 9. Surface functionalization of bio-derived carbon nanostructures -- 9.1 Introduction -- 9.2 Bio-derived carbon nanostructures -- 9.2.1 Zero-dimensional carbon nanostructures -- 9.2.2 One-dimensional carbon nanostructures -- 9.2.3 Two-dimensional carbon nanostructures -- 9.3 Nanoengineering approaches -- 9.3.1 Top-down versus bottom-up engineering strategies -- 9.3.2 Control over size, shape, and surface properties -- 9.3.3 Tailoring mechanical, electrical, and chemical properties -- 9.3.3.1 Chirality, aspect ratio, and mechanical properties -- 9.3.3.2 Concentration of carbon nanostructures in composite and electrical properties -- 9.3.3.3 Porosity and thermal conductivity -- 9.4 Surface functionalization -- 9.4.1 Exohedral chemical functionalization -- 9.4.1.1 Noncovalent functionalization -- 9.4.1.2 Covalent functionalization -- 9.4.2 Endohedral functionalization -- 9.5 Surface functionalization and application of bio-based carbon nanostructures -- 9.5.1 Fullerenes -- 9.5.2 Nanodiamonds -- 9.5.3 Carbon nanotubes -- 9.5.4 Graphene and its derivatives -- 9.5.4.1 Covalent functionalization of graphene -- 9.5.4.2 Noncovalent functionalization of graphene -- 9.6 Conclusion and future perspective -- References -- 10. Characterization of bio-derived carbon nanostructures -- 10.1 Introduction -- 10.2 Characterization techniques -- 10.2.1 X-ray diffraction spectroscopy -- 10.2.2 Raman spectroscopy -- 10.2.3 Fourier-transform infrared spectroscopy -- 10.2.4 X-ray photon spectroscopy and energy-dispersive X-ray analysis -- 10.2.5 Surface morphological analysis of biomass-derived carbon -- 10.2.5.1 Scanning electron microscopy and field emission electron microscopy -- 10.2.5.2 Tunneling electron microscopy/high-resolution tunneling electron microscopy -- 10.2.5.3 Brunauer-Emmett-Teller surface analysis -- 10.2.6 Thermogravimetric analysis. , 10.2.7 Electrochemical characterizations.
    Additional Edition: ISBN 9780443135798
    Additional Edition: ISBN 0443135797
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edoccha_9961619512902883
    Format: 1 online resource (546 pages)
    Edition: 1st ed.
    ISBN: 0-443-13580-0
    Note: Front Cover -- Bio-derived Carbon Nanostructures -- Copyright Page -- Contents -- List of contributors -- I Introduction to bio-derived carbon nanostructures -- 1. Introduction to bio-derived carbon nanostructures -- 1.1 Introduction -- 1.1.1 Definition of bio-derived carbon nanostructures -- 1.1.2 Importance and applications in nanotechnology -- 1.1.3 Overview of chapter contents -- 1.2 Historical perspectives -- 1.2.1 Early discoveries and developments in carbon nanomaterials -- 1.2.2 Evolution of bio-derived approaches -- 1.3 Types of bio-derived carbon nanostructures -- 1.3.1 Carbon nanotubes from biomass -- 1.3.2 Graphene derived from biological sources -- 1.4 Synthesis methods -- 1.4.1 Pyrolysis and carbonization techniques -- 1.4.2 Chemical vapor deposition approaches -- 1.4.3 Biofabrication methods -- 1.5 Applications -- 1.5.1 Biomedical applications -- 1.5.2 Environmental and energy-related applications -- 1.6 Challenges and future directions -- 1.6.1 Current challenges in bio-derived carbon nanostructure research -- 1.6.2 Prospects for future development and innovation -- 1.7 Conclusions -- References -- 2. Bio-based raw materials for preparation of carbon nanostructures -- 2.1 Introduction -- 2.2 Carbon-based materials and their properties -- 2.2.1 Graphene -- 2.2.2 Carbon nanotubes -- 2.2.3 Fullerenes -- 2.2.4 Quantum dots -- 2.3 Challenges and drawbacks of existing graphene developments -- 2.3.1 Transition to bio-based materials for synthesis of carbon-based materials -- 2.3.2 Carbon-based nanomaterial obtained from bio-based and chemical resources -- 2.4 Bio-derived carbon-based nanomaterials -- 2.4.1 Synthesis and development of bio-derived carbon-based nanomaterials -- 2.4.1.1 Microwave irradiation method -- 2.4.1.2 Pyrolysis of biomass -- 2.4.1.2.1 Steam pyrolysis -- 2.4.1.2.2 Spray pyrolysis -- 2.4.1.3 Hydrothermal carbonization. , 2.4.1.4 Ionothermal carbonization -- 2.4.2 Classification of bio-based raw materials and selection of feedstock -- 2.4.2.1 Lignin waste -- 2.4.2.2 Oil palm -- 2.4.2.3 Rice husk -- 2.4.2.4 Plant material -- 2.4.2.5 Animal waste -- 2.5 Applications of bio-derived carbon material and composites -- 2.5.1 Electrochemical sensor applications -- 2.5.2 Energy storage applications -- 2.5.3 Low-mass polymer composites -- 2.5.4 Energy conversion devices -- 2.6 Emerging opportunities and conclusions -- References -- 3. Role of structure of bio-based raw materials for their conversion to carbon nanostructures -- 3.1 Introduction -- 3.2 Bio-based raw materials: types and properties -- 3.3 Properties of bio-based materials -- 3.4 Relationship between raw materials structure and carbon nanostructures -- 3.5 Effect of chemical composition on carbonization and nanostructure -- 3.6 Influence of molecular structure on carbon nanostructure morphology -- 3.7 Impact of impurities on carbon nanostructure quality -- 3.8 Summary -- References -- 4. Zero-, one-, two-, and three-dimensional carbon nanostructures derived from bio-based material -- 4.1 Introduction -- 4.2 Overview of zero-, one-, two-, and three-dimensional carbon nanostructures -- 4.3 Bio-derived zero-, one-, two-, and three-dimensional carbon nanostructures -- 4.3.1 Zero-dimensional carbon nanostructures -- 4.3.1.1 Carbon dots -- 4.3.1.2 Graphene quantum dots -- 4.3.2 One-dimensional carbon nanostructures -- 4.3.2.1 Carbon nanotubes -- 4.3.2.2 Carbon nanofibers -- 4.3.3 Two-dimensional carbon nanostructures -- 4.3.3.1 Carbon nanosheets -- 4.3.4 Three-dimensional carbon nanostructures -- 4.3.4.1 Carbon nanoflowers -- 4.3.4.2 Carbon nanoonions -- 4.4 Summary -- References -- II Preparation of bio-derived carbon nanostructures -- 5. Fundamentals of conversion of bio-based material into carbon nanostructures. , 5.1 Introduction -- 5.2 Biomass precursor -- 5.2.1 Plant biomass -- 5.2.1.1 Cellulose -- 5.2.1.2 Hemicellulose -- 5.2.1.3 Lignin -- 5.2.1.4 Glucose -- 5.2.2 Animal biomass -- 5.2.2.1 Protein -- 5.2.2.2 Chitin -- 5.2.2.3 Chitosan -- 5.3 Lignocellulosic biomass pretreatment -- 5.3.1 Physical method -- 5.3.1.1 Mechanical extrusion pretreatment -- 5.3.1.2 Milling pretreatment -- 5.3.1.3 Ultrasound-assisted pretreatment -- 5.3.1.4 Microwave-assisted pretreatment -- 5.3.2 Chemical pretreatment method -- 5.3.2.1 Alkali pretreatment -- 5.3.2.2 Acidic pretreatment -- 5.4 Nanocarbon from different biomass -- 5.4.1 Sugarcane waste -- 5.4.2 Pineapple waste -- 5.4.3 Rice husk -- 5.4.4 Date palm -- 5.4.5 Rubber seeds -- 5.4.6 Coconut shells -- 5.4.7 Orange peels -- 5.5 Nanostructured biomass: an economic approach -- 5.6 Conclusion and future prospective -- References -- 6. Preparation of bioderived carbon nanostructures by pyrolysis -- 6.1 Introduction -- 6.2 Overview of pyrolysis process -- 6.2.1 Principle -- 6.2.2 Working -- 6.2.3 Construction -- 6.2.4 Types -- 6.2.4.1 Thermal pyrolysis -- 6.2.4.2 Microwave-assisted pyrolysis -- 6.2.4.3 Hydrothermal carbonization -- 6.2.5 Effect of temperature and pressure on biomass pyrolysis -- 6.3 Bio-derived carbon nanostructures -- 6.3.1 Carbon nanostructures -- 6.3.2 Preparation of carbon quantum dots by pyrolysis -- 6.3.3 Preparation of carbon nanotubes by pyrolysis -- 6.3.4 Preparation of carbon nanofibers by pyrolysis -- 6.3.5 Preparation of carbon nanosheets by pyrolysis -- 6.3.6 Effects of lignin content on the nanostructures -- 6.4 Summary -- References -- 7. Preparation of bio-derived carbon nanostructures by chemical vapor deposition -- 7.1 Introduction -- 7.1.1 Chemical vapor deposition -- 7.1.2 Laser ablation -- 7.1.3 Pyrolysis -- 7.2 Carbon from bio-based sources -- 7.2.1 Combustion -- 7.2.2 Calcination. , 7.2.3 Pyrolysis -- 7.2.4 Carbonization -- 7.3 Types of nanostructures -- 7.3.1 Carbon nanotubes -- 7.3.2 Carbon onion -- 7.3.3 Graphene -- 7.3.4 Fullerene -- 7.3.5 Nanodiamond -- 7.4 General methods of nanostructure synthesis -- 7.4.1 Chemical vapor deposition -- 7.4.2 Sol-gel synthesis -- 7.4.3 Template synthesis -- 7.5 Types of chemical vapor deposition -- 7.5.1 Atmospheric chemical vapor deposition -- 7.5.2 Low-pressure chemical vapor deposition -- 7.5.3 Aerosol-assisted chemical vapor deposition -- 7.5.4 Plasma-activated chemical vapor deposition -- 7.5.5 Microwave-assisted chemical vapor deposition -- 7.6 Parameters controlling the nanostructure formed by chemical vapor deposition -- 7.6.1 Operation conditions -- 7.6.2 Purification after chemical vapor deposition -- 7.7 Methods for preparation of bio-derived carbon nanostructures -- 7.7.1 Zero-dimensional nanostructures methodology -- 7.7.2 Electrolysis -- 7.8 Applications of bio-derived carbon nanostructures -- 7.8.1 Carbon nanostructures for supercapacitors -- 7.8.2 Fabrication approaches for flexible energy storage devices -- 7.8.3 Biomass-to-syngas conversion -- 7.8.4 Hydrogen storage -- 7.8.5 Carbon-based nanomaterials for chemical and biological sensing applications -- 7.9 Future perspective and challenges -- 7.9.1 Challenges -- 7.9.2 Chemical vapor deposition over other methods -- 7.10 Summary -- References -- 8. Preparation of bio-derived carbon nanostructures by mechanical and physical activation -- 8.1 Introduction -- 8.2 Mechanical activation -- 8.2.1 Process overview -- 8.2.2 Bio-derived carbon nanostructure synthesis via mechanical activation -- 8.3 Physical activation -- 8.3.1 Process overview (principle, technique, mechanism) -- 8.3.2 Bio-derived carbon nanostructure synthesis via physical activation -- 8.4 Limitations of mechanical and physical activation methods -- 8.5 Summary. , References -- 9. Surface functionalization of bio-derived carbon nanostructures -- 9.1 Introduction -- 9.2 Bio-derived carbon nanostructures -- 9.2.1 Zero-dimensional carbon nanostructures -- 9.2.2 One-dimensional carbon nanostructures -- 9.2.3 Two-dimensional carbon nanostructures -- 9.3 Nanoengineering approaches -- 9.3.1 Top-down versus bottom-up engineering strategies -- 9.3.2 Control over size, shape, and surface properties -- 9.3.3 Tailoring mechanical, electrical, and chemical properties -- 9.3.3.1 Chirality, aspect ratio, and mechanical properties -- 9.3.3.2 Concentration of carbon nanostructures in composite and electrical properties -- 9.3.3.3 Porosity and thermal conductivity -- 9.4 Surface functionalization -- 9.4.1 Exohedral chemical functionalization -- 9.4.1.1 Noncovalent functionalization -- 9.4.1.2 Covalent functionalization -- 9.4.2 Endohedral functionalization -- 9.5 Surface functionalization and application of bio-based carbon nanostructures -- 9.5.1 Fullerenes -- 9.5.2 Nanodiamonds -- 9.5.3 Carbon nanotubes -- 9.5.4 Graphene and its derivatives -- 9.5.4.1 Covalent functionalization of graphene -- 9.5.4.2 Noncovalent functionalization of graphene -- 9.6 Conclusion and future perspective -- References -- 10. Characterization of bio-derived carbon nanostructures -- 10.1 Introduction -- 10.2 Characterization techniques -- 10.2.1 X-ray diffraction spectroscopy -- 10.2.2 Raman spectroscopy -- 10.2.3 Fourier-transform infrared spectroscopy -- 10.2.4 X-ray photon spectroscopy and energy-dispersive X-ray analysis -- 10.2.5 Surface morphological analysis of biomass-derived carbon -- 10.2.5.1 Scanning electron microscopy and field emission electron microscopy -- 10.2.5.2 Tunneling electron microscopy/high-resolution tunneling electron microscopy -- 10.2.5.3 Brunauer-Emmett-Teller surface analysis -- 10.2.6 Thermogravimetric analysis. , 10.2.7 Electrochemical characterizations.
    Additional Edition: ISBN 0-443-13579-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 0443135290?
Did you mean 0443135711?
Did you mean 044313572x?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages