Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    UID:
    almahu_9949982777902882
    Umfang: 1 online resource (427 pages)
    Ausgabe: First edition.
    ISBN: 9780443136269 , 0443136262
    Serie: Micro and Nano Technologies
    Inhalt: This comprehensive volume explores the preparation, applications, and simulation methods of nanofluids, with contributions from experts in the field. Covering various types of nanofluids, including CuO/Cu, Al2O3, ZnO, Fe3O4, and SiO2, the book discusses their synthesis, stability, and diverse applications in heat transfer, renewable energy systems, biomedical fields, and electronics cooling. It also delves into advanced simulation techniques for analyzing nanofluid behavior in heat exchangers and other systems. The work is intended for researchers, engineers, and professionals interested in the latest developments in nanotechnology and fluid dynamics, offering insights into both theoretical and practical aspects of nanofluid technology.
    Anmerkung: Front Cover -- Nanofluids -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Nanofluids at a glance -- 1.1 Nanofluids -- References -- 2 CuO/Cu-based nanofluids -- 2.1 General information -- 2.2 CuO/Cu nanoparticle properties -- 2.3 Procurement techniques for nanofluids -- 2.3.1 Metal based nanofluid -- 2.3.2 Metal oxide based nanofluid -- 2.3.3 Carbon based nanofluid -- 2.3.4 Hybrid/combined metal based nanofluid -- 2.4 Single-step method -- 2.5 Two-step method -- 2.6 Applications of CuO/Cu nanofluids -- 2.6.1 Thermal transfer -- 2.6.2 Solar panel -- 2.6.3 Heat sink -- 2.7 Conclusion and outlook -- References -- 3 Aluminum oxide-based nano-fluids -- 3.1 General introduction -- 3.2 Al2O3-based nanofluids -- 3.2.1 Al2O3-hybrid nanofluids -- 3.2.2 Synthesis methods of nanofluids -- 3.3 Applications -- 3.3.1 Renewable energy systems -- 3.3.1.1 Solar heat gatherers -- 3.3.1.2 Solar photovoltaic thermic structures -- 3.3.1.3 Geothermal energy -- 3.3.1.4 Fuel cells -- 3.3.2 Machining industries -- 3.3.2.1 Turning operations -- 3.3.2.2 Grinding operations -- 3.3.2.3 Drilling operations -- 3.3.2.4 Milling operations -- 3.3.3 Preservation of electronics -- 3.3.4 Oscillating heat pipes -- 3.3.5 Cooling performance of different components of automobile -- 3.3.6 Domestic refrigerator -- 3.4 Conclusion and outlook -- References -- 4 ZnO-based nanofluids -- 4.1 General introduction -- 4.2 Different methods for creating zinc oxide nanofluids -- 4.3 Strategies for improving nanofluid stability -- 4.3.1 The surfactants employed in nanofluids -- 4.3.2 Surfactant-free surface modification techniques -- 4.3.3 Mechanisms of nanofluid stability -- 4.4 The application of zinc oxide nanofluids in heat transfer processes -- 4.5 Biomedical applications of zinc oxide nanofluids -- 4.5.1 Anticancer effects of zinc oxide nanofluids. , 4.5.2 Zinc oxide nanofluid bioimaging -- 4.5.3 Antibacterial activity of zinc oxide nanofluids -- 4.6 Application of zinc oxide nanofluids as photocatalysts -- 4.6.1 Mechanisms of zinc oxide photocatalysis -- 4.7 Conclusion and outlook -- References -- 5 Fe3O4-based nanofluids -- 5.1 General introduction -- 5.2 General properties of magnetic fluid -- 5.3 Preparation and stability of nanofluids -- 5.3.1 Preparation of nanofluids -- 5.3.2 Ferrofluid stability -- 5.3.3 Nanofluids' thermal characteristics -- 5.3.4 Thermal conductivity of nanofluids -- 5.3.5 Viscosity of nanofluids -- 5.4 Characterization techniques -- 5.5 Applications of magnetic nanofluids -- 5.5.1 Utilization for heat transfer -- 5.5.2 Temperature and pH sensors -- 5.5.3 Tunable optical filter -- 5.5.4 Magnetic hyperthermia-based cancer therapy -- 5.5.5 Technology for separation based on magnetic nanomaterials -- 5.5.6 Magnetic sealing -- 5.5.7 Drug delivery -- 5.5.8 Antifungal and antibacterial properties -- 5.6 Conclusion and outlook -- References -- 6 SiO2-based nanofluids -- 6.1 General introduction -- 6.2 Preparation of SiO2 nanofluid -- 6.2.1 SNP production (chemical techniques) -- 6.2.2 Synthesis of SNPs (biogenic methods) -- 6.3 Chemical applications of SNPs -- 6.4 Mono-phase and dual-phase methods of nanofluid preparation -- 6.5 Nanofluids applications -- 6.6 Parameters that effected on nanofluids applications -- 6.7 Characterization techniques -- 6.8 Applications of nanofluid -- 6.8.1 Nanofluids in cooling systems -- 6.8.2 Nanofluids in vapor compression systems -- 6.8.3 Nanofluids in server and microchips cooling -- 6.8.4 Nanofluids in the application of heat exchanger -- 6.8.5 Nanofluid detergent -- 6.8.6 Application of nanofluids in the extraction of geothermal energy -- 6.8.7 Nanofluids for the absorption of CO2 -- 6.8.8 Biomedical applications of nanofluids. , 6.8.9 Optical applications -- 6.9 Preserving nanofluid stability -- 6.9.1 Zeta potential analysis -- 6.9.2 Light absorption analysis -- 6.9.3 Strategies to enhance nanofluid stability -- 6.9.3.1 Using detergents in nanofluids -- 6.9.3.2 Particle modification techniques: the detergent-free method -- 6.9.4 Flow characteristics of nanofluids -- 6.9.4.1 Non-Newtonian and Newtonian behavior of nanofluids -- 6.9.4.2 MWCNT nanofluid flow dynamics -- 6.10 The effect of various factors on thermal conductivity -- 6.10.1 Base fluid -- 6.10.2 Nanoparticles -- 6.10.3 Concentration of nanoparticles -- 6.10.4 Particle size -- 6.10.5 Particle shape -- 6.10.6 Temperature -- 6.10.7 Surfactant -- 6.11 Conclusion and outlook -- References -- 7 Carbon nanotubes/graphene-based nanofluids -- 7.1 General introduction -- 7.2 Carbon nanotubes -- 7.2.1 Synthesis of carbon nanotubes and carbon nanotubes nanofluids -- 7.3 Graphene -- 7.3.1 Synthesis of graphene and graphene nanofluids -- 7.4 Carbon nanotube/graphene-based nanofluids -- 7.4.1 Synthesis of graphene/carbon nanotubes nanofluids -- 7.5 Conclusion and outlook -- References -- 8 Fluid flow and heat transfer simulations of nanofluids in heat sinks -- 8.1 General introduction -- 8.2 Thermal management of electronic devices -- 8.3 Cooling methods -- 8.3.1 Heat sinks -- 8.3.1.1 Microchannel heat sinks -- 8.3.1.1.1 Microchannel heat sink structure -- 8.3.1.1.2 Internal reinforcement structures in microchannel heat sinks -- 8.3.1.1.3 Material used in microchannel heat sinks -- 8.3.1.1.4 Geometrical parameters of microchannel heat sinks -- 8.3.1.1.5 Coolants used in microchannel heat sinks -- 8.4 Nanofluids -- 8.4.1 Different types of nanofluids -- 8.4.2 Preparation -- 8.4.2.1 Single-step method -- 8.4.2.1.1 Step-by-step process -- 8.4.2.2 Two-step method -- 8.4.2.2.1 Step-by-step process. , 8.4.3 Thermophysical characterization -- 8.4.4 Exploring potential mechanisms of nanofluids -- 8.4.5 Microchannel heat sinks with nanofluid for electronics cooling -- 8.5 Simulation of nanofluid in microchannel heat sinks -- 8.5.1 Different models of simulating nanofluids in microchannel heat sinks -- 8.5.1.1 Homogeneous model -- 8.5.1.1.1 Basic assumptions -- 8.5.1.1.2 Enhanced properties -- 8.5.1.1.3 Advantages and limitations -- 8.5.1.2 Mixture model -- 8.5.1.2.1 Basic concept -- 8.5.1.2.2 Key equations -- 8.5.1.2.3 Advantages and limitations -- 8.5.1.2.4 Simulation software -- 8.5.1.3 Eulerien-Eulerian model -- 8.5.1.3.1 Basic concept -- 8.5.1.3.2 Key equations -- 8.5.1.3.3 Advantages and limitations -- 8.5.1.3.4 Simulation software -- 8.5.1.4 Eulerian-Lagrangian model -- 8.5.1.4.1 Basic concept -- 8.5.1.4.2 Key equations -- 8.5.1.4.3 Advantages and limitations -- 8.5.1.4.4 Simulation software -- 8.5.1.5 Volume of fluid model -- 8.5.1.5.1 Basic concept -- 8.5.1.5.2 Key equations -- 8.5.1.5.3 Advantages and limitations -- 8.5.1.5.4 Simulation software -- 8.5.2 Examples of simulations conducted using the described methods -- 8.6 Conclusion and outlook -- References -- 9 Optimizing fluid flow efficiency: third-grade hybrid nanofluid flow with electro-magneto-hydrodynamics in confined vertic... -- 9.1 Introduction -- 9.2 Mathematical and physical structure of the hybrid nanofluid model -- 9.3 Shooting method -- 9.3.1 Steps in implementing the shooting method -- 9.3.2 Results and discussion -- 9.3.3 Velocity profile -- 9.3.4 Temperature profile -- 9.4 Conclusions and outlooks -- References -- 10 Optimal homotopy asymptotic method with Caputo fractional derivatives: a new approach for solving time-fractional Navier... -- 10.1 General introduction -- 10.2 Preliminaries -- 10.3 Formulation of the OHAM -- 10.4 Numerical examples -- 10.5 Conclusion. , References -- 11 Numerical simulations of nanofluids heat and mass transfer (lattice Boltzmann methods and applications) -- 11.1 General introduction -- 11.2 Nanofluids modeling methods -- 11.2.1 Nanofluid single-phase method -- 11.2.2 Nanofluid two-phase method -- 11.3 Heat transfer simulations of nanofluids -- 11.3.1 LBM -- 11.3.1.1 LBM equations -- 11.3.1.2 Nusselt number calculation -- 11.3.1.3 Curved boundary modeling -- 11.3.1.4 Magnetohydrodynamics modeling -- 11.3.1.5 Immersed boundary-simplified TLBM -- 11.3.2 Application samples of LBM -- 11.4 Conclusion and outlook -- References -- 12 Parametric influences on nanofluid-jet cooling heat transfer -- 12.1 General introduction -- 12.2 Brief bibliographic overview of nanofluid-jet impingement cooling -- 12.3 Nanofluids and hybrid nanofluids for jet impingement cooling -- 12.3.1 Preparation of nanofluids and hybrid nanofluids -- 12.3.1.1 One-step technique -- 12.3.1.2 Two-step technique -- 12.3.2 Parametric factors influencing nanofluids stability and thermophysical properties -- 12.3.2.1 Influence of surfactants -- 12.3.2.2 Influence of nanofluids pH -- 12.3.2.3 Influence of sonicating temperature -- 12.3.2.4 Influence of nanoparticle size -- 12.3.2.5 Influence of nanoparticle shape -- 12.3.2.6 Influence of nanoparticle concentration -- 12.3.2.7 Influence of preparation method -- 12.3.3 Applications of nanofluids -- 12.4 Nanofluid jet impingement cooling -- 12.4.1 Application of jet impingement cooling -- 12.4.1.1 Submerged and free-surface jets -- 12.4.2 Confinement effect -- 12.5 Studies on parametric factor affecting thermal enhancement of nanofluid-jet impingement -- 12.5.1 Nozzle-jet parameters -- 12.5.1.1 Influence of nozzle geometry -- 12.5.2 Influence of number of nozzles -- 12.5.2.1 Influence of nozzle orientation -- 12.5.3 Target surface/object nature parameters. , 12.5.3.1 Influence of target surface geometry.
    Weitere Ausg.: ISBN 9780443136252
    Weitere Ausg.: ISBN 0443136254
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    edoccha_9961598859702883
    Umfang: 1 online resource (427 pages)
    Ausgabe: 1st ed.
    ISBN: 0-443-13626-2
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Nanofluids -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Nanofluids at a glance -- 1.1 Nanofluids -- References -- 2 CuO/Cu-based nanofluids -- 2.1 General information -- 2.2 CuO/Cu nanoparticle properties -- 2.3 Procurement techniques for nanofluids -- 2.3.1 Metal based nanofluid -- 2.3.2 Metal oxide based nanofluid -- 2.3.3 Carbon based nanofluid -- 2.3.4 Hybrid/combined metal based nanofluid -- 2.4 Single-step method -- 2.5 Two-step method -- 2.6 Applications of CuO/Cu nanofluids -- 2.6.1 Thermal transfer -- 2.6.2 Solar panel -- 2.6.3 Heat sink -- 2.7 Conclusion and outlook -- References -- 3 Aluminum oxide-based nano-fluids -- 3.1 General introduction -- 3.2 Al2O3-based nanofluids -- 3.2.1 Al2O3-hybrid nanofluids -- 3.2.2 Synthesis methods of nanofluids -- 3.3 Applications -- 3.3.1 Renewable energy systems -- 3.3.1.1 Solar heat gatherers -- 3.3.1.2 Solar photovoltaic thermic structures -- 3.3.1.3 Geothermal energy -- 3.3.1.4 Fuel cells -- 3.3.2 Machining industries -- 3.3.2.1 Turning operations -- 3.3.2.2 Grinding operations -- 3.3.2.3 Drilling operations -- 3.3.2.4 Milling operations -- 3.3.3 Preservation of electronics -- 3.3.4 Oscillating heat pipes -- 3.3.5 Cooling performance of different components of automobile -- 3.3.6 Domestic refrigerator -- 3.4 Conclusion and outlook -- References -- 4 ZnO-based nanofluids -- 4.1 General introduction -- 4.2 Different methods for creating zinc oxide nanofluids -- 4.3 Strategies for improving nanofluid stability -- 4.3.1 The surfactants employed in nanofluids -- 4.3.2 Surfactant-free surface modification techniques -- 4.3.3 Mechanisms of nanofluid stability -- 4.4 The application of zinc oxide nanofluids in heat transfer processes -- 4.5 Biomedical applications of zinc oxide nanofluids -- 4.5.1 Anticancer effects of zinc oxide nanofluids. , 4.5.2 Zinc oxide nanofluid bioimaging -- 4.5.3 Antibacterial activity of zinc oxide nanofluids -- 4.6 Application of zinc oxide nanofluids as photocatalysts -- 4.6.1 Mechanisms of zinc oxide photocatalysis -- 4.7 Conclusion and outlook -- References -- 5 Fe3O4-based nanofluids -- 5.1 General introduction -- 5.2 General properties of magnetic fluid -- 5.3 Preparation and stability of nanofluids -- 5.3.1 Preparation of nanofluids -- 5.3.2 Ferrofluid stability -- 5.3.3 Nanofluids' thermal characteristics -- 5.3.4 Thermal conductivity of nanofluids -- 5.3.5 Viscosity of nanofluids -- 5.4 Characterization techniques -- 5.5 Applications of magnetic nanofluids -- 5.5.1 Utilization for heat transfer -- 5.5.2 Temperature and pH sensors -- 5.5.3 Tunable optical filter -- 5.5.4 Magnetic hyperthermia-based cancer therapy -- 5.5.5 Technology for separation based on magnetic nanomaterials -- 5.5.6 Magnetic sealing -- 5.5.7 Drug delivery -- 5.5.8 Antifungal and antibacterial properties -- 5.6 Conclusion and outlook -- References -- 6 SiO2-based nanofluids -- 6.1 General introduction -- 6.2 Preparation of SiO2 nanofluid -- 6.2.1 SNP production (chemical techniques) -- 6.2.2 Synthesis of SNPs (biogenic methods) -- 6.3 Chemical applications of SNPs -- 6.4 Mono-phase and dual-phase methods of nanofluid preparation -- 6.5 Nanofluids applications -- 6.6 Parameters that effected on nanofluids applications -- 6.7 Characterization techniques -- 6.8 Applications of nanofluid -- 6.8.1 Nanofluids in cooling systems -- 6.8.2 Nanofluids in vapor compression systems -- 6.8.3 Nanofluids in server and microchips cooling -- 6.8.4 Nanofluids in the application of heat exchanger -- 6.8.5 Nanofluid detergent -- 6.8.6 Application of nanofluids in the extraction of geothermal energy -- 6.8.7 Nanofluids for the absorption of CO2 -- 6.8.8 Biomedical applications of nanofluids. , 6.8.9 Optical applications -- 6.9 Preserving nanofluid stability -- 6.9.1 Zeta potential analysis -- 6.9.2 Light absorption analysis -- 6.9.3 Strategies to enhance nanofluid stability -- 6.9.3.1 Using detergents in nanofluids -- 6.9.3.2 Particle modification techniques: the detergent-free method -- 6.9.4 Flow characteristics of nanofluids -- 6.9.4.1 Non-Newtonian and Newtonian behavior of nanofluids -- 6.9.4.2 MWCNT nanofluid flow dynamics -- 6.10 The effect of various factors on thermal conductivity -- 6.10.1 Base fluid -- 6.10.2 Nanoparticles -- 6.10.3 Concentration of nanoparticles -- 6.10.4 Particle size -- 6.10.5 Particle shape -- 6.10.6 Temperature -- 6.10.7 Surfactant -- 6.11 Conclusion and outlook -- References -- 7 Carbon nanotubes/graphene-based nanofluids -- 7.1 General introduction -- 7.2 Carbon nanotubes -- 7.2.1 Synthesis of carbon nanotubes and carbon nanotubes nanofluids -- 7.3 Graphene -- 7.3.1 Synthesis of graphene and graphene nanofluids -- 7.4 Carbon nanotube/graphene-based nanofluids -- 7.4.1 Synthesis of graphene/carbon nanotubes nanofluids -- 7.5 Conclusion and outlook -- References -- 8 Fluid flow and heat transfer simulations of nanofluids in heat sinks -- 8.1 General introduction -- 8.2 Thermal management of electronic devices -- 8.3 Cooling methods -- 8.3.1 Heat sinks -- 8.3.1.1 Microchannel heat sinks -- 8.3.1.1.1 Microchannel heat sink structure -- 8.3.1.1.2 Internal reinforcement structures in microchannel heat sinks -- 8.3.1.1.3 Material used in microchannel heat sinks -- 8.3.1.1.4 Geometrical parameters of microchannel heat sinks -- 8.3.1.1.5 Coolants used in microchannel heat sinks -- 8.4 Nanofluids -- 8.4.1 Different types of nanofluids -- 8.4.2 Preparation -- 8.4.2.1 Single-step method -- 8.4.2.1.1 Step-by-step process -- 8.4.2.2 Two-step method -- 8.4.2.2.1 Step-by-step process. , 8.4.3 Thermophysical characterization -- 8.4.4 Exploring potential mechanisms of nanofluids -- 8.4.5 Microchannel heat sinks with nanofluid for electronics cooling -- 8.5 Simulation of nanofluid in microchannel heat sinks -- 8.5.1 Different models of simulating nanofluids in microchannel heat sinks -- 8.5.1.1 Homogeneous model -- 8.5.1.1.1 Basic assumptions -- 8.5.1.1.2 Enhanced properties -- 8.5.1.1.3 Advantages and limitations -- 8.5.1.2 Mixture model -- 8.5.1.2.1 Basic concept -- 8.5.1.2.2 Key equations -- 8.5.1.2.3 Advantages and limitations -- 8.5.1.2.4 Simulation software -- 8.5.1.3 Eulerien-Eulerian model -- 8.5.1.3.1 Basic concept -- 8.5.1.3.2 Key equations -- 8.5.1.3.3 Advantages and limitations -- 8.5.1.3.4 Simulation software -- 8.5.1.4 Eulerian-Lagrangian model -- 8.5.1.4.1 Basic concept -- 8.5.1.4.2 Key equations -- 8.5.1.4.3 Advantages and limitations -- 8.5.1.4.4 Simulation software -- 8.5.1.5 Volume of fluid model -- 8.5.1.5.1 Basic concept -- 8.5.1.5.2 Key equations -- 8.5.1.5.3 Advantages and limitations -- 8.5.1.5.4 Simulation software -- 8.5.2 Examples of simulations conducted using the described methods -- 8.6 Conclusion and outlook -- References -- 9 Optimizing fluid flow efficiency: third-grade hybrid nanofluid flow with electro-magneto-hydrodynamics in confined vertic... -- 9.1 Introduction -- 9.2 Mathematical and physical structure of the hybrid nanofluid model -- 9.3 Shooting method -- 9.3.1 Steps in implementing the shooting method -- 9.3.2 Results and discussion -- 9.3.3 Velocity profile -- 9.3.4 Temperature profile -- 9.4 Conclusions and outlooks -- References -- 10 Optimal homotopy asymptotic method with Caputo fractional derivatives: a new approach for solving time-fractional Navier... -- 10.1 General introduction -- 10.2 Preliminaries -- 10.3 Formulation of the OHAM -- 10.4 Numerical examples -- 10.5 Conclusion. , References -- 11 Numerical simulations of nanofluids heat and mass transfer (lattice Boltzmann methods and applications) -- 11.1 General introduction -- 11.2 Nanofluids modeling methods -- 11.2.1 Nanofluid single-phase method -- 11.2.2 Nanofluid two-phase method -- 11.3 Heat transfer simulations of nanofluids -- 11.3.1 LBM -- 11.3.1.1 LBM equations -- 11.3.1.2 Nusselt number calculation -- 11.3.1.3 Curved boundary modeling -- 11.3.1.4 Magnetohydrodynamics modeling -- 11.3.1.5 Immersed boundary-simplified TLBM -- 11.3.2 Application samples of LBM -- 11.4 Conclusion and outlook -- References -- 12 Parametric influences on nanofluid-jet cooling heat transfer -- 12.1 General introduction -- 12.2 Brief bibliographic overview of nanofluid-jet impingement cooling -- 12.3 Nanofluids and hybrid nanofluids for jet impingement cooling -- 12.3.1 Preparation of nanofluids and hybrid nanofluids -- 12.3.1.1 One-step technique -- 12.3.1.2 Two-step technique -- 12.3.2 Parametric factors influencing nanofluids stability and thermophysical properties -- 12.3.2.1 Influence of surfactants -- 12.3.2.2 Influence of nanofluids pH -- 12.3.2.3 Influence of sonicating temperature -- 12.3.2.4 Influence of nanoparticle size -- 12.3.2.5 Influence of nanoparticle shape -- 12.3.2.6 Influence of nanoparticle concentration -- 12.3.2.7 Influence of preparation method -- 12.3.3 Applications of nanofluids -- 12.4 Nanofluid jet impingement cooling -- 12.4.1 Application of jet impingement cooling -- 12.4.1.1 Submerged and free-surface jets -- 12.4.2 Confinement effect -- 12.5 Studies on parametric factor affecting thermal enhancement of nanofluid-jet impingement -- 12.5.1 Nozzle-jet parameters -- 12.5.1.1 Influence of nozzle geometry -- 12.5.2 Influence of number of nozzles -- 12.5.2.1 Influence of nozzle orientation -- 12.5.3 Target surface/object nature parameters. , 12.5.3.1 Influence of target surface geometry.
    Weitere Ausg.: ISBN 0-443-13625-4
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0443133662?
Meinten Sie 0443136254?
Meinten Sie 0443132232?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz