UID:
almahu_9949983810302882
Umfang:
1 online resource (429 pages)
Ausgabe:
First edition.
ISBN:
9780443136740
,
0443136742
Serie:
Additive Manufacturing Materials and Technologies Series
Inhalt:
This book, part of the Additive Manufacturing Materials and Technologies Series, focuses on the advancements and applications of 4D printing in robotics and smart materials. Edited by Ali Zolfagharian and Mahdi Bodaghi, it explores the integration of smart materials and 4D printing techniques in creating innovative robotic systems, including soft actuators, sensors, and robotic materials. The book discusses the design, fabrication, and control of 4D-printed devices, highlighting their potential in fields such as medical devices, automated design, and environmental sensors. It aims to serve as a comprehensive resource for researchers, engineers, and practitioners interested in the latest developments in additive manufacturing and robotics.
Anmerkung:
Front Cover -- Smart Materials in Additive Manufacturing, Volume 3 -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Robotic materials 4D printing -- 1.1 4D printing of pneumatic soft robots sensors and actuators -- 1.2 4D printing of hydrogel soft actuator -- 1.3 4D printing of soft sensors in robotics -- 1.4 4D printing of micropositioning parallel robots -- 1.5 Autonomously controlled soft actuators by 4D printing -- 1.6 Silicone-based robots via 4D printing -- 1.7 Closed-loop 4D printing of autonomous soft robots -- 1.8 Spoon4PD: a smart tool additively manufactured for Parkinson's disease -- 1.9 Liquid crystal elastomers 4D printing -- 1.10 4D printing of molded-interconnect device -- 1.11 Automated design of 4D-printed soft robots -- 1.12 A design paradigm on 4D printing magnetorheological actuators for highly integrated robotics applications -- 1.13 4D printing of polyurethane actuators and sensors -- References -- 2 4D printing of pneumatic soft robots sensors and actuators -- 2.1 Introduction -- 2.2 4D printing approaches with soft materials -- 2.2.1 Photocuring technology -- 2.2.2 Fused deposition molding -- 2.2.3 InkJet printing -- 2.2.4 Direct ink writing -- 2.3 Structural design and actuator control -- 2.3.1 Fiber-constrained structure -- 2.3.2 Corrugated structure -- 2.3.3 Folding structure -- 2.3.4 Untethered structure -- 2.4 Multifunctional design -- 2.4.1 Self-sensing design -- 2.4.2 Seal-healing design -- 2.4.2.1 Interchain diffusion -- 2.4.2.2 Phase separation morphology -- 2.4.2.3 Shape memory recovery -- 2.4.2.4 Dynamic covalent remodeling -- 2.4.2.5 Micro or nanoparticle reinforcement -- 2.4.3 Self-discoloration design -- 2.4.4 Stiffness changing design -- 2.5 Challenges and future opportunities -- 2.5.1 Reliability -- 2.5.2 Pneumatic supply.
,
2.5.3 Motion control -- 2.6 Conclusions -- Acknowledgments -- References -- 3 4D printing of hydrogel soft actuators -- 3.1 Introduction -- 3.2 4D printing technologies -- 3.2.1 Light-based 4D printing -- 3.2.1.1 Stereolithography -- 3.2.1.2 Digital light processing -- 3.2.2 Direct ink writing -- 3.3 Stimuli-responsive hydrogels -- 3.3.1 Thermal-responsive hydrogels -- 3.3.2 Light-responsive hydrogels -- 3.3.3 Electro-responsive hydrogels -- 3.3.4 Magneto-responsive hydrogels -- 3.3.5 pH-responsive hydrogels -- 3.3.6 Ion-responsive hydrogels -- 3.4 Preparation of hydrogel actuators with anisotropic structures -- 3.4.1 Bilayer structures -- 3.4.2 Gradient structures -- 3.4.3 Patterned structures -- 3.4.4 Oriented structures -- 3.5 Application of 4D printed hydrogel soft actuators -- 3.5.1 Manipulators and grippers -- 3.5.2 Locomotion behaviors -- 3.5.3 Biomimetic devices -- 3.5.4 Valves -- 3.5.5 Folding and origami -- 3.6 Perspectives -- 3.7 Conclusion -- References -- 4 4D printing of soft sensors in robotics -- 4.1 Introduction -- 4.2 4D printing and robotics -- 4.3 Diverse printing techniques toward soft sensors -- 4.4 Materials and design considerations for soft sensors -- 4.5 Types of soft sensors -- 4.6 Piezoresistive-type sensors -- 4.7 Capacitive-type soft sensors -- 4.8 Piezoelectric type soft sensors -- 4.9 Triboelectric type sensors -- 4.10 Magnetoelectric type sensor -- 4.11 Environmental and chemical sensors -- 4.12 Challenges and future prospects of 4D printing of soft sensors in robotics -- 4.13 Conclusion -- References -- 5 4D printing of micropositioning parallel robots -- 5.1 Introduction -- 5.2 Design and working principle -- 5.3 Shape programming -- 5.4 Finite element analysis -- 5.5 Results and discussion -- 5.5.1 x-axis and y-axis actuations -- 5.5.2 xy-plane actuations -- 5.5.3 Rotation -- 5.5.4 z-axis actuations.
,
5.5.5 Performance comparison -- 5.6 Conclusion -- Acknowledgments -- References -- 6 4D printing of autonomously controlled soft actuators for tremor vibration suppression -- 6.1 Introduction -- 6.2 Methodology -- 6.3 Fabricating and characterizing of the variable stiffness structure -- 6.3.1 Project A -- 6.3.2 Characterization -- 6.3.3 Project B -- 6.3.4 Characterizations -- 6.3.4.1 Mathematical model of the flexible joint -- 6.3.4.2 Reinforcement learning algorithm for autonomous control -- 6.4 Simulation -- 6.5 Experimental results and discussions -- 6.5.1 Project A -- 6.5.2 Project B -- 6.6 Conclusion -- References -- 7 Silicone elastomer soft robots via 4D printing -- 7.1 Introduction -- 7.1.1 Material and fabrication methods -- 7.1.2 Additive manufacturing as a solution to fabricate soft robotics parts -- 7.1.3 4D printing -- 7.2 Soft planar parallel manipulator -- 7.2.1 Materials preparation and manufacturing -- 7.2.2 Kinematic design of the three-prismatic-revolute-revolute robot -- 7.2.3 Choosing the optimal arrangement for the thermal stimulus through experimental analysis -- 7.2.4 Asymmetry designation and finite element analysis experiments -- 7.2.5 Results and discussion -- 7.3 Bi-stable soft robotic gripper -- 7.3.1 Methodology -- 7.3.2 Optimization using response surface methodology -- 7.3.3 Finite element simulation -- 7.3.4 Response surface method Modeling and optimization -- 7.4 Results and discussion -- 7.4.1 Finite element simulation results -- 7.4.2 Response surface method results -- 7.5 Conclusion -- References -- 8 Closed-loop 4D printing of autonomous soft robots -- 8.1 Introduction -- 8.2 Modeling methods -- 8.2.1 Modeling by first principles -- 8.2.2 Data-driven modeling -- 8.2.3 Model representations -- 8.2.3.1 Linear models -- 8.2.3.2 Polynomials -- 8.2.3.3 Neural networks -- 8.2.3.4 Gaussian processes.
,
8.2.3.5 Decision trees -- 8.2.4 Model fitting methods -- 8.2.4.1 Optimization algorithms -- 8.2.4.2 Statistical regression techniques -- 8.2.4.3 Machine learning approaches -- 8.2.4.4 Bayesian inference -- 8.3 Closed-loop control methods -- 8.3.1 Feedback regulators -- 8.3.2 Optimal control -- 8.3.2.1 Dynamic programming -- 8.3.2.2 Model predictive control -- 8.3.3 Adaptive control -- 8.3.3.1 Model reference adaptive control -- 8.3.3.2 Adaptive sliding mode control -- 8.3.4 Intelligent control -- 8.3.4.1 Reinforcement learning -- 8.3.4.2 Fuzzy logic control -- 8.3.5 Model-based and model-free controllers -- 8.4 Closed-loop control of 4D-printed shape memory polymer -- 8.4.1 Data-driven modeling -- 8.4.2 Modeling of electric heating unit -- 8.4.3 Modeling of shape memory polymer -- 8.4.4 Cascade control structure -- 8.4.4.1 Proportional integral derivative control -- 8.4.4.2 Dynamic programming -- 8.4.4.3 Reinforcement learning -- 8.4.4.4 Adaptive control -- 8.5 Conclusion -- Acknowledgment -- References -- 9 Spoon4PD: a smart tool 3D printed for Parkinson's disease -- 9.1 Introduction -- 9.2 Methodology -- 9.2.1 Mathematical modeling -- 9.2.2 Spoon4PD conceptual design -- 9.2.3 3D printing of the Spoon4PD handle -- 9.2.4 Hand tremor test -- 9.3 Results and discussions -- 9.4 Conclusions -- Acknowledgements -- References -- 10 Liquid crystal elastomers 4D printing -- 10.1 The brief introduction of liquid crystal elastomers -- 10.2 Conventional methods for liquid crystal elastomers fabrication -- 10.3 Liquid crystal elastomers 4D printing -- 10.3.1 Direct ink writing -- 10.3.2 Digital light processing -- 10.3.3 Two-photon lithography -- 10.4 Summary and outlook -- References -- 11 4D printing of molded interconnect device -- 11.1 Introduction -- 11.2 Thermal deformation of fused filament fabrication-printed thermoplastic parts.
,
11.2.1 Programmed printing paths for fused filament fabrication-type additive manufacturing -- 11.2.2 In-plane shape transformation of homogeneously laminated strands -- 11.2.3 Out-of-plane shape transformation of heterogeneously laminated strands -- 11.2.4 In-plane shape transformation of partial annulus -- 11.2.5 Out-of-plane shape transformation of full annulus -- 11.3 Thermo-responsive 4D printing using programmed printing paths -- 11.3.1 2D-to-3D shape transformation of complicated shapes -- 11.3.2 Localized shape transformation -- 11.3.3 Constrained shape transformation -- 11.4 Thermo-responsive 4D printing of molded interconnect device keyboard -- 11.4.1 Design of a flat molded interconnect device keypad -- 11.4.2 Design of printing paths for programmed anisotropy -- 11.4.3 Additive manufacturing of flat molded interconnect device keyboard -- 11.4.4 4D printing of curved molded interconnect device keyboard using constrained shape transformation -- 11.5 Conclusion -- Acknowledgment -- References -- 12 Automated design of 4D-printed soft robots -- 12.1 Introduction -- 12.2 Automated design process -- 12.2.1 Representation -- 12.2.2 Optimization algorithm -- 12.2.3 Objective -- 12.2.4 Design evaluation -- 12.3 Design optimization of pneumatic soft robots -- 12.3.1 Topology-optimized soft grippers -- 12.4 Tendon-driven compliant soft robots -- 12.5 Variable stiffness soft robots -- 12.6 Future directions -- Acknowledgment -- References -- 13 4D printing magnetorheological actuators for highly integrated robotics applications -- 13.1 Introduction -- 13.1.1 Motivation -- 13.1.2 Approach -- 13.2 Technological base -- 13.2.1 Magnetorheological clutches -- 13.2.2 Metal 3D printing -- 13.2.3 4D printing nested magnetorheological clutches -- 13.3 Prototyping -- 13.3.1 Design and manufacturing -- 13.3.2 Experimental characterization -- 13.3.3 Benchmarking.
,
13.4 Conclusions.
Weitere Ausg.:
ISBN 9780443136733
Weitere Ausg.:
ISBN 0443136734
Sprache:
Englisch
Bookmarklink