UID:
almahu_9949984224602882
Umfang:
1 online resource (553 pages)
Ausgabe:
First edition.
ISBN:
9780443153037
,
0443153035
Serie:
Plant and Soil Microbiome Series
Anmerkung:
Front Cover -- Biocontrol Agents for Improved Agriculture -- Copyright Page -- Contents -- List of contributors -- 1 The expediency of fungi as biocontrol agents for the enhancement of food security -- 1.1 Introduction -- 1.2 Challenges to food security -- 1.2.1 Climate change -- 1.2.2 Pest invasion and food insecurity -- 1.2.3 Disease severity by pathogen infection -- 1.3 Integrated pest and disease management strategies -- 1.4 Different approaches to mitigating pests and diseases -- 1.4.1 Crop rotations -- 1.4.2 Management of crop residues and field sanitation -- 1.4.3 Seed quality -- 1.4.4 Weed control -- 1.5 Detrimental effects of pesticide application on farm produce -- 1.6 Paradigm shift to biological approach for pest and disease management -- 1.7 Biological control -- 1.8 Benefits of biological controls -- 1.9 Advantages of biocontrol -- 1.10 The use of fungi as a biocontrol strategy -- 1.10.1 Proficiency of fungi as biocontrol agents in managing plant pathogens -- 1.10.1.1 Utilization of Trichoderma spp -- 1.10.1.1.1 Mycoparasitism -- 1.10.1.1.2 Entomopathogenesis -- 1.10.1.1.3 Enzymes for degradation of fungal cell walls -- 1.10.1.2 The use of Pichia anomala -- 1.11 Efficacy of entomopathogenic fungi in managing pest invasion -- 1.11.1 Effectiveness of Beauveria bassiana on dipteran infestation on food crops -- 1.11.2 The use of Metarhizium anisopliae on leptodipterans and coleopterans -- 1.11.3 Utilization of advanced technologies in biological control of pests and diseases -- 1.11.4 Future perspectives -- 1.12 Conclusions -- References -- 2 Plant growth-promoting microorganisms from native plants: an untapped resource of biocontrol and biofertilizer agents -- 2.1 Introduction -- 2.2 Microbial-mediated adaptations of native plants to adverse environmental conditions -- 2.2.1 Drought resistance -- 2.2.2 Salt stress tolerance.
,
2.2.3 Heavy metal resistance -- 2.3 Forest trees as reservoirs of BCAs -- 2.4 Plant growth-promoting microorganisms from native medicinal plants -- 2.5 BCAs from wild relatives of Solanaceae -- 2.6 PGPR from root nodules of native plants -- 2.7 Microorganisms isolated from the phyllosphere of native plants as potential BCAs -- 2.8 BCAs from native plants growing in arid areas -- 2.9 Plant growth-promoting microorganisms from plants colonizing contaminated sites -- 2.10 Endophytic fungi from native plants as a source of BCAs -- 2.11 Final considerations -- Acknowledgments -- References -- 3 Biological control of Plasmopara viticola: where are we now? -- 3.1 Agricultural relevance of Plasmopara viticola -- 3.2 Life cycle of Plasmopara viticola -- 3.3 Grapevine downy mildew management -- 3.3.1 Breeding approach to select new varieties resistant to Plasmopara viticola -- 3.3.2 Prevention of Plasmopara viticola infections using chemicals -- 3.4 Occurrence of fungicide resistance in Plasmopara viticola -- 3.5 New frontiers in the biological control of Plasmopara viticola -- 3.5.1 Plant extracts -- 3.5.2 Microbial biocontrol agents -- 3.5.2.1 Fungal biocontrol agents -- 3.5.2.2 Bacterial biocontrol agents -- 3.6 Lysobacter capsici AZ78, a promising candidate for the biocontrol of Plasmopara viticola -- 3.7 Conclusions and future perspectives -- References -- 4 Biological control of diseases in Theobroma cacao -- 4.1 Introduction -- 4.2 Moniliasis (frosty pod) -- 4.3 Black pod rot -- 4.4 Witches' broom -- 4.5 Ceratocystis wilt -- 4.6 Anthracnose -- 4.7 Vascular streak dieback -- 4.8 Bacterial pathogens -- 4.9 Cacao swollen shoot -- 4.10 Control methods for cacao pathogens -- 4.11 Mechanisms in biological control -- 4.12 Biocontrol agents used for cacao diseases -- 4.12.1 Trichoderma -- 4.13 Mycorrhiza -- 4.14 Actinobacteria -- 4.14.1 Bacillus.
,
4.14.2 Pseudomonas -- 4.15 Conclusion -- Acknowledgments -- Funding -- References -- 5 Synergistic mechanisms between plant growth-promoting bacteria and Trichoderma to control plant diseases -- 5.1 Introduction -- 5.2 Pant growth-promoting bacteria and biocontrol traits of plant pathogens -- 5.2.1 Biocontrol traits -- 5.2.1.1 Competition -- 5.2.1.2 Siderophores (iron chelating compounds) -- 5.2.1.3 Antimicrobial compounds -- 5.2.1.4 Production of cell wall-degrading enzymes -- 5.2.1.5 Induced systemic resistance by plant growth-promoting bacteria -- 5.3 What is Trichoderma and what are its mechanisms of biocontrol? -- 5.3.1 Biocontrol mechanisms of Trichoderma -- 5.3.1.1 Soluble and volatile antimicrobial compounds -- 5.3.1.2 Lytic enzymes -- 5.3.1.3 Mycoparasitism -- 5.3.1.4 Induced systemic resistance by Trichoderma -- 5.4 Cooperation between PGPR and Trichoderma to control plant diseases -- 5.5 Conclusions and perspectives -- References -- 6 Genomic mining for the identification of promising mechanisms of bioactivity in biological control agents -- 6.1 Introduction -- 6.2 Metabolites produced by biological control agents and their mechanisms of bioactivity -- 6.2.1 Lytic enzymes -- 6.2.2 Antibiotics -- 6.2.3 Siderophores -- 6.2.4 Bacteriocins -- 6.3 DNA sequencing tools -- 6.4 Bioinformatic tools for gene annotation -- 6.5 Mining genes encoding secondary metabolites -- 6.6 Examples of gene mining encoding biocontrol secondary metabolites -- 6.7 Conclusions and perspectives -- References -- 7 Production and commercialization of biocontrol products -- 7.1 Introduction -- 7.1.1 Types of biological control agents -- 7.1.2 Ecological significances of biological control agents -- 7.2 Development of biological control agents -- 7.2.1 Mass production -- 7.2.2 Formulation of biological control agents -- 7.2.3 Packaging and shelf life.
,
7.3 Commercialization of biological control agents -- 7.3.1 Registration -- 7.3.2 Biological control agents availability to farmers to combine with other practices or pesticides -- 7.4 Conclusion -- References -- 8 Study of Trichoderma microbial ecology and biotechnology -- 8.1 Introduction -- 8.2 What is Trichoderma? -- 8.3 What role does Trichoderma play in agriculture? -- 8.4 When to apply Trichoderma in a crop? -- 8.5 Why is Trichoderma used against the development of diseases? -- 8.5.1 Competition -- 8.5.2 Mycoparasitism -- 8.5.3 Antibiosis -- 8.6 What is the structure and function of the secondary metabolites of Trichoderma? -- 8.6.1 Metabolites of low molecular weight or volatile organic compounds -- 8.6.1.1 Polyketides -- 8.6.1.1.1 Harzianopyridone -- 8.6.1.1.2 Harzianolide, dehydro harzianolide -- 8.6.1.1.3 6-Pentyl-a-pyrone, 6-pent-1-enyl-a-pyrone -- 8.6.1.1.4 Massoilactone, δ-decenolactone -- 8.6.1.1.5 Koninginins -- 8.6.1.2 Terpenes -- 8.6.1.2.1 Sesquiterpenes -- 8.6.1.2.2 Trichothecenes -- 8.6.1.2.3 Triterpenes and sterols -- 8.6.1.3 High molecular weight metabolites -- 8.6.1.3.1 Peptaibols -- 8.6.2 Other metabolites with antifungal activity -- 8.7 What other benefits involve the use of Trichoderma in crops? -- 8.7.1 Colonization of the root -- 8.7.2 Promotion of plant growth -- 8.7.3 Plant defense induction -- 8.7.4 Regulators of plant growth -- 8.7.5 Solubilization of nutrients -- 8.7.6 Adaptation to abiotic stresses -- 8.8 Conclusions -- References -- 9 Formulation of microbial biocontrol agents-an industrial perspective -- 9.1 Introduction -- 9.2 Principles of Formulation -- 9.2.1 The Formulation of Biocontrol Agents -- 9.2.1.1 Microbial Biocontrol Agents Production -- 9.2.1.2 Formulation of Biocontrol Agents -- 9.2.2 Granular and Powder Formulations -- 9.2.3 Liquid Formulations.
,
9.2.4 Production, commercialization, and stabilization of biocontrol agents -- 9.2.4.1 Commercialization -- 9.2.5 Main steps of commercialization -- 9.2.5.1 Isolation and screening of microorganisms -- 9.2.6 Hyperparasitism -- 9.2.7 Competition -- 9.2.8 Antibiosis -- 9.2.9 Field test -- 9.2.10 Mass production -- 9.2.11 Regulations of biological control agents -- 9.3 Conclusion and future aspect -- References -- 10 Endophytic microbiota in plant disease management -- 10.1 Introduction -- 10.2 Endophytes as biocontrol agents -- 10.2.1 Bacterial endophytes -- 10.2.2 Fungal endophytes -- 10.2.2.1 Actinomycetes endophytes -- 10.3 Mechanism of disease suppression by endophytes -- 10.3.1 Direct mechanism -- 10.3.1.1 Antibiosis -- 10.3.1.2 Competition -- 10.3.1.3 Lysis -- 10.3.1.4 Siderophore production -- 10.3.1.5 Hydrogen cyanide production -- 10.3.1.6 Ammonia production -- 10.3.1.7 1-Aminocyclopropane-1-carboxylate utilization -- 10.3.2 Indirect mechanisms -- 10.3.2.1 Induced plant resistance -- 10.3.2.2 Hyperparasitism -- 10.3.2.3 Plant secondary metabolites secretion -- 10.4 Conclusion -- References -- Further reading -- 11 Endophytic microorganisms as a source of bioactive compounds -- 11.1 Introduction -- 11.2 Endophytes -- 11.2.1 Endophytic bacteria -- 11.2.2 Endophytic fungi -- 11.2.3 Endophytic actinomycetes -- 11.3 Establishment of endophytic bacteria inside the host plant -- 11.4 Methods of analysis of microbial endophytes -- 11.5 Endophytes as reservoir of bioactive compounds -- 11.5.1 Secondary metabolites -- 11.5.1.1 Phenols -- 11.5.1.2 Alkaloids -- 11.5.1.3 Terpenoids -- 11.5.1.4 Phytohormones and defense enzymes -- 11.5.2 Enzymes -- 11.6 Biological properties of endophytic bioactive compounds -- 11.6.1 Antifungal compounds -- 11.6.2 Antibiotics/antimicrobial compounds -- 11.6.3 Anticancer compounds -- 11.6.4 Antioxidant compounds.
,
11.6.5 Antidiabetic compounds.
Weitere Ausg.:
ISBN 9780443151996
Weitere Ausg.:
ISBN 0443151997
Sprache:
Englisch
Bookmarklink