UID:
almahu_9949984997502882
Umfang:
1 online resource (481 pages)
Ausgabe:
First edition.
ISBN:
9780443153617
,
0443153612
Inhalt:
This book, 'Enriched Numerical Techniques and Applications,' edited by Azher Jameel, Ghulam Ashraf Ulharmain, and Indra Virsingh, explores advanced numerical methods and their applications in engineering and scientific problems. It focuses on techniques such as the extended finite element method and the element-free Galerkin method, providing detailed methodologies for issues like fracture simulation, crack analysis, and large deformation modeling. The book is intended for researchers and practitioners in engineering fields who require sophisticated numerical methods for solving complex problems. By covering both theoretical formulations and practical applications, it aims to enhance the reader's understanding of modern numerical techniques and their capabilities.
Anmerkung:
Front Cover -- Enriched Numerical Techniques -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Development of level set methodologies for different geometric discontinuities -- 1.1 Introduction -- 1.2 Level set method -- 1.3 Normal level set function -- 1.4 Level set representation for closed discontinuities -- 1.5 Level set representation for cracks -- 1.6 Evaluation of split and tip elements -- 1.7 Effect of material irregularities on cracks -- 1.7.1 Displacement approximations -- 1.7.2 Evaluation of fracture parameters -- 1.8 Numerical results and discussions -- 1.8.1 Circular discontinuities -- 1.8.2 Elliptical discontinuity -- 1.8.3 Triangular discontinuity -- 1.8.4 Rectangular discontinuity -- 1.8.5 Hexagonal discontinuity -- 1.8.6 Octagonal discontinuity -- 1.8.7 A rectangular plate carrying cracks -- 1.8.8 Effect of size of inclusion -- 1.8.9 Effect of position of inclusion -- 1.8.10 Effect of size of hole -- 1.8.11 Effect of position of hole -- 1.9 Conclusion -- References -- 2 Higher order enrichment functions for fracture simulation in isotropic and orthotropic material medium -- 2.1 Introduction -- 2.2 Displacement approximation with extended finite element method -- 2.2.1 Partition of unity -- 2.2.2 Level set method with extended finite element method -- 2.2.3 Heaviside enrichment function -- 2.2.4 Branch enrichment functions for isotropic material -- 2.2.5 Branch enrichment functions for orthotropic material -- 2.2.6 Numerical integration -- 2.2.7 Fracture parameter (stress intensity factor) calculation -- 2.3 Result and discussions -- 2.3.1 Edge crack plate with an isotropic material medium -- 2.3.2 Center crack plate with isotropic material medium -- 2.3.3 Edge crack plate with an orthotropic material medium -- 2.3.4 Center crack plate with an orthotropic material medium.
,
2.3.5 Edge crack with multiple holes orthotropic plate under fatigue loading -- 2.3.6 Edge crack with multiple holes/cracks orthotropic plate under fatigue loading -- 2.4 Conclusion -- References -- 3 Extended finite element method for three-dimensional cracks -- 3.1 Introduction -- 3.2 Extended finite element method for cracks -- 3.2.1 Choice of enrichment functions -- 3.3 Basic fracture mechanics principles -- 3.3.1 Linear elastic fracture mechanics principles -- 3.3.2 The stress intensity factor -- 3.3.3 The J-integral -- 3.3.4 The crack tip opening displacement -- 3.3.5 The interaction integral -- 3.4 Numerical results and discussions -- 3.4.1 Investigation of a plane edge crack -- 3.4.2 Cuboidal domain with a horizontal penny crack -- 3.4.3 Cuboidal domain with inclined penny crack -- 3.4.4 Cuboidal domain with a lens crack -- 3.5 Conclusion -- References -- 4 Extended finite element method for free vibration analyses of cracked plate based on higher order shear deformation theory -- 4.1 Introduction -- 4.2 Theoretical formulation -- 4.2.1 Partition of unity -- 4.2.2 Level set method -- 4.2.3 Enrichment -- 4.2.4 Selection of enriched nodes -- 4.2.5 Extended finite element approximation -- 4.2.6 Plate kinematics -- 4.2.6.1 Displacement field -- 4.2.6.2 Strain-displacement relation -- 4.2.6.3 Material constitutive relations -- 4.2.7 Modeling of functionally graded plate -- 4.2.8 Governing equation -- 4.2.8.1 Strain energy -- 4.2.8.2 Energy due to temperature rise and moisture rise -- 4.2.8.3 Kinetic energy -- 4.2.9 Numerical integration -- 4.2.10 Boundary conditions -- 4.3 Numerical results -- 4.3.1 Convergence and validation study -- 4.3.2 Parametric study -- 4.4 Summary -- References -- 5 Extended finite element method for stability analysis of stiffened trapezoidal composite panels -- 5.1 Introduction -- 5.2 Theory and formulation.
,
5.3 The extended finite element method -- 5.4 Results and discussions -- 5.5 Conclusion -- References -- 6 Implementation issues in element-free Galerkin method -- 6.1 Introduction -- 6.2 Approximation function in element-free Galerkin method -- 6.3 Choice of weight (Kernel) function -- 6.3.1 Quartic spline weight function -- 6.3.2 Cubic spline weight function -- 6.3.3 Exponential spline weight function -- 6.4 Imposition of boundary conditions in element-free Galerkin method -- 6.4.1 Lagrangian multiplier method -- 6.4.2 Penalty method -- 6.5 Governing equations for element-free Galerkin method -- 6.6 Modeling of discontinuities in element-free Galerkin method -- 6.6.1 Methods based on modification of weight function -- 6.6.2 Methods based on modification of intrinsic basis -- 6.6.3 Methods based on extrinsic MLS enrichment -- 6.6.4 Methods based on extrinsic PUM enrichment -- 6.7 Level set method in element-free Galerkin method -- 6.8 h- and p-refinement -- 6.9 Numerical integration -- 6.9.1 Direct nodal integration -- 6.9.2 Stress point integration -- 6.9.3 Cell structure or background mesh -- 6.10 Conclusion -- References -- 7 Enriched element-free Galerkin method for three-dimensional cracks -- 7.1 Introduction -- 7.2 The element-free Galerkin method -- 7.2.1 Basic element-free Galerkin method models -- 7.2.2 Enriched element-free Galerkin method for cracks -- 7.2.3 Enrichment functions for cracks -- 7.3 Numerical results and discussions -- 7.3.1 Analysis of plane edge crack -- 7.3.2 Horizontal penny crack in a cubical domain -- 7.3.3 Inclined penny crack in a cubical domain -- 7.3.4 Lens crack in a cubical domain -- 7.4 Conclusion -- References -- 8 Enriched element-free Galerkin method for elastoplastic crack growth in steel alloys -- 8.1 Introduction -- 8.2 Governing formulations -- 8.3 Numerical formulation in elastoplastic analysis.
,
8.3.1 Plasticity modeling -- 8.3.2 Analysis of elastoplastic stress-strain relations -- 8.3.3 Matrix representation of elastoplastic stress-strain relations -- 8.4 Stress calculation algorithms in elastoplasticity -- 8.4.1 Elastic predictor and plastic corrector algorithm -- 8.4.2 Implicit integration or von Mises plasticity -- 8.4.2.1 The radial return method -- 8.4.2.2 Material Jacobian for time-independent isotropic linear hardening plasticity -- 8.4.3 Plane stress plasticity -- 8.4.3.1 Plane stress-projected plasticity model -- 8.4.3.2 Plane stress-projected integration plasticity model -- 8.4.3.3 The plane stress-projected return mapping -- 8.4.3.4 The elastoplastic consistent tangent operator for plane stress plasticity -- 8.5 Investigation of fatigue crack growth -- 8.5.1 Computation of J-integral -- 8.5.2 Evaluation of fatigue life -- 8.6 Numerical results and discussions -- 8.7 Conclusion -- References -- 9 Enriched element-free Galerkin method for modeling large elasto-plastic deformations -- 9.1 Introduction -- 9.2 Large deformation theory -- 9.3 Introduction to element-free Galerkin method -- 9.3.1 Choice of weight function -- 9.3.2 Element-free Galerkin method models -- 9.4 Total Lagrangian formulation -- 9.5 Updated Lagrangian formulation -- 9.6 Large deformation in presence of discontinuities -- 9.7 Numerical results and discussions -- 9.7.1 Large deformation analysis with one bi-material surface -- 9.7.2 Large deformation analysis with two bi-material surfaces -- 9.7.3 Large deformation with a spherical interface -- 9.8 Conclusion -- References -- 10 Modeling of Hertzian contact problems by enriched element-free Galerkin method -- 10.1 Introduction -- 10.2 Hertzian classical theory -- 10.2.1 Contact between two spheres -- 10.2.2 Contact between an elastic half-space and a sphere -- 10.2.3 Two cylinders in contact with parallel axis.
,
10.3 Continuum model of contact friction -- 10.4 Plasticity theory of friction -- 10.5 Governing equation for element-free Galerkin method -- 10.6 Lagrangian multiplier for contact problems -- 10.7 Imposition of contact constraints using penalty method -- 10.8 Analysis of the classical Hertzian contact problem: cylinder-rectangular block interaction -- 10.9 Conclusion -- References -- 11 Enriched element-free Galerkin method for large elasto-plastic deformations: basic mathematical foundations -- 11.1 Introduction -- 11.2 Kinematics of large deformation -- 11.2.1 The deformation gradient -- 11.2.2 Measures of stresses and strains -- 11.3 Large deformation analysis by element-free Galerkin method -- 11.3.1 Total Lagrangian formulation -- 11.3.2 Updated Lagrangian formulation -- 11.3.3 Large deformation in the presence of discontinuities -- 11.4 Elasto-plastic analysis -- 11.4.1 Elasto-plastic analysis in one dimension -- 11.4.2 Elastic-predictor plastic-corrector algorithm -- 11.4.3 General elasto-plastic analysis -- 11.4.3.1 The yield criteria -- 11.4.3.2 Strain hardening -- 11.4.3.3 Elasto-plastic stress-strain relations -- 11.4.3.4 Ramberg-Osgood model -- 11.5 Conclusion -- References -- 12 Implementation issues in extended isogeometric analysis -- 12.1 Introduction -- 12.2 Extended isogeometric analysis -- 12.2.1 Computer-aided design functions in extended isogeometric analysis -- 12.2.1.1 B-splines -- 12.2.1.2 Nonuniform rational B-spline -- 12.2.1.3 T-splines -- 12.2.1.4 Locally refined B-splines -- 12.2.1.5 PHT-splines -- 12.2.2 Fracture mechanics problem formulation -- 12.2.3 Approximation of voids and cracks using extended isogeometric analysis -- 12.2.3.1 Approximation of voids using extended isogeometric analysis -- 12.2.3.2 Approximation of cracks using extended isogeometric analysis -- 12.2.4 Selection of control points for enrichment.
,
12.2.5 Extended isogeometric analysis-based discretization.
Weitere Ausg.:
ISBN 9780443153624
Weitere Ausg.:
ISBN 0443153620
Sprache:
Englisch
Bookmarklink