Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, MA :Woodhead Publishing,
    UID:
    almahu_9949984947102882
    Umfang: 1 online resource (565 pages)
    Ausgabe: First edition.
    ISBN: 9780443155659 , 0443155658
    Serie: Woodhead Publishing Series in Biomaterials Series
    Anmerkung: Front Cover -- Hybrid Polymeric Systems for Biomedical Applications -- Copyright Page -- Contents -- List of contributors -- 1 Hybrid polymeric systems: design, biomedical applications, opportunities, challenges, and future perspectives -- 1.1 Introduction to hybrid polymeric systems: definition, properties, and potential applications in the biomedical field -- 1.2 Synthesis methods for hybrid polymeric nanoparticles: co-precipitation, solvent evaporation, microemulsion, and other m... -- 1.2.1 Co-precipitation -- 1.2.2 Emulsion-solvent evaporation -- 1.2.3 Microemulsion -- 1.2.4 Other methods -- 1.3 Biomedical applications of hybrid polymeric systems -- 1.4 Opportunities, challenges, and future perspectives -- References -- 2 Hybrid polymeric materials for potential applications in cartilage, ligament, and tendon tissue engineering -- 2.1 Introduction -- 2.2 Development and characterization of hybrid polymeric materials for cartilage tissue engineering -- 2.2.1 The role of bioactive molecules in improving the performance of hybrid polymeric materials for ligament tissue engine... -- 2.2.2 Investigating the effects of varying mechanical properties on the performance of hybrid polymeric materials for tendo... -- 2.3 3D printing of hybrid polymeric materials for cartilage, ligament, and tendon tissue engineering -- 2.3.1 In vivo evaluation of hybrid polymeric materials for cartilage, ligament, and tendon tissue engineering in animal models -- 2.4 Development of hybrid polymeric materials with enhanced biomimetic cues for improved tissue regeneration in cartilage, ... -- 2.5 Challenges of hybrid polymeric materials in cartilage, ligament, and tendon tissue engineering -- 2.6 Conclusion -- References -- 3 Hybrid polymeric materials for potential applications in bone regeneration -- 3.1 Introduction. , 3.2 Significance of bone tissue engineering/regeneration -- 3.3 Scaffold materials for bone tissue engineering -- 3.3.1 Organic materials for bone tissue engineering -- 3.3.1.1 Natural polymeric biomaterials for bone tissue engineering -- 3.3.1.2 Synthetic polymeric biomaterials for bone tissue engineering -- 3.3.1.3 Polymer composites -- 3.3.2 Inorganic bioactive materials for bone tissue engineering -- 3.3.2.1 Calcium phosphates -- 3.3.2.2 Hydroxyapatite -- 3.3.2.3 β-Tricalcium phosphate -- 3.4 Techniques for the design of different hybrid polymeric-based materials for use in bone regeneration -- 3.4.1 Polymer-polymer hybrid material for the design of scaffolds for bone regeneration -- 3.4.1.1 Synthetic polymer-synthetic polymer hybrid materials -- 3.4.1.2 Natural polymer-synthetic polymer hybrid materials -- 3.4.1.3 Natural polymer-natural polymer hybrid materials -- 3.4.2 Polymer-inorganic hybrid material for the design of scaffolds for bone regeneration -- 3.5 Challenges and prospects surrounding the potential application of hybrid polymeric-based material scaffolds in bone tis... -- 3.5.1 Prospects -- 3.5.2 Challenges -- 3.6 Conclusion -- References -- 4 Hybrid polymeric scaffolds for potential applications in wound dressing and skin regeneration -- 4.1 Introduction -- 4.2 Classification of wounds and process of wound healing -- 4.3 Categories of wound dressings -- 4.4 Polymer-based hybrid scaffolds for wound dressing and skin regeneration -- 4.4.1 Chitosan-based hybrid scaffolds -- 4.4.1.1 Chitosan-based hybrid nanofibers -- 4.4.1.2 Chitosan-based hybrid hydrogels -- 4.4.1.3 Chitosan-based hybrid films and membranes -- 4.4.1.4 Chitosan-based hybrid sponges -- 4.4.1.5 Chitosan-based hybrid cryogels and aerogels -- 4.4.1.6 Chitosan-based hybrid foams and wafers -- 4.4.2 Alginate-based hybrid scaffolds -- 4.4.2.1 Alginate-based hybrid nanofibers. , 4.4.2.2 Alginate-based hybrid hydrogels -- 4.4.2.3 Alginate-based hybrid films and membranes -- 4.4.2.4 Alginate-based hybrid sponges -- 4.4.2.5 Alginate-based hybrid cryogels and aerogels -- 4.4.2.6 Alginate-based hybrid foams and wafers -- 4.4.3 Cellulose-based hybrid scaffolds -- 4.4.3.1 Cellulose-based hybrid nanofibers -- 4.4.3.2 Cellulose-based hybrid hydrogels -- 4.4.3.3 Cellulose-based hybrid films and membranes -- 4.4.3.4 Cellulose-based hybrid sponges -- 4.4.3.5 Cellulose-based hybrid aerogels -- 4.4.3.6 Cellulose-based hybrid wafers -- 4.4.4 Hyaluronic acid-based hybrid scaffolds -- 4.4.4.1 Hyaluronic acid-based hybrid nanofibers -- 4.4.4.2 Hyaluronic acid-based hybrid hydrogels -- 4.4.4.3 Hyaluronic acid-based hybrid films and membranes -- 4.4.4.4 Hyaluronic acid-based hybrid sponges -- 4.4.4.5 Hyaluronic acid-based hybrid cryogels and foams -- 4.4.5 Collagen-based hybrid scaffolds -- 4.4.5.1 Collagen-based hybrid nanofibers -- 4.4.5.2 Collagen-based hybrid hydrogels -- 4.4.5.3 Collagen-based hybrid films and membranes -- 4.4.5.4 Collagen-based hybrid sponges -- 4.4.5.5 Collagen-based hybrid cryogels -- 4.4.6 Gelatin-based hybrid scaffolds -- 4.4.6.1 Gelatin-based hybrid nanofibers -- 4.4.6.2 Gelatin-based hybrid hydrogels -- 4.4.6.3 Gelatin-based hybrid films and membranes -- 4.4.6.4 Gelatin-based hybrid sponges -- 4.4.6.5 Gelatin-based hybrid cryogels or aerogels -- 4.4.7 Silk fibroin-based hybrid scaffolds -- 4.4.7.1 Silk fibroin-based hybrid nanofibers -- 4.4.7.2 Silk fibroin-based hybrid hydrogels -- 4.4.7.3 Silk fibroin-based hybrid films and membranes -- 4.4.7.4 Silk fibroin-based hybrid sponges -- 4.4.7.5 Silk fibroin-based hybrid cryogels -- 4.5 Conclusion and future perspective -- References -- 5 Hybrid polymeric systems for biomedical applicactions -- 5.1 Introduction. , 5.1.1 Hybrid-based hydrogel design for the delivery of anti-human immunodeficiency virus -- 5.1.2 Hybrid-based hydrogel design for the delivery of antifungals -- 5.1.3 Hybrid-based hydrogel design for the delivery of antibacterials -- 5.1.4 Hybrid-based hydrogel design for drug delivery of antimalarials -- 5.1.5 Cancer and challenges associated with their treatment -- 5.1.5.1 Hybrid-based hydrogel design for the delivery of anticancer drugs -- 5.2 Future perspective and conclusion -- References -- 6 Hybrid polymeric scaffolds for diagnostic applications -- 6.1 Introduction -- 6.2 Synthesis of solid silica nanoparticles -- 6.2.1 Diagnostic applications -- 6.3 Synthesis of gold nanoparticles -- 6.3.1 Diagnostic applications -- 6.4 Synthesis of mesoporous silica nanoparticles -- 6.4.1 Diagnostic applications -- 6.5 Synthesis of quantum dots -- 6.5.1 Diagnostic applications -- 6.6 Applications of polymer hybrid materials in diagnostics -- 6.6.1 Magnetic resonance imaging -- 6.6.2 Capture and purification of biomolecules through protein-ligand recognition -- 6.6.3 LAB-ON-A-CHIP terminology -- 6.6.3.1 Temperature and light-controlled actuators -- 6.6.3.2 Capturing diagnostic targets -- 6.6.4 In vitro and in vivo bioimaging -- 6.6.5 Biological labeling -- 6.6.6 Biosensors -- 6.7 Future trends -- References -- 7 Hybrid polymeric systems for potential applications in ocular drug delivery -- 7.1 Introduction -- 7.1.1 Eye disorders: impact on society -- 7.1.2 Eye anatomy -- 7.2 Barriers to ocular administration -- 7.3 Administration routes -- 7.3.1 Topical -- 7.3.2 Periocular administration -- 7.3.2.1 Subconjunctival -- 7.3.3 Intravitreal -- 7.4 Current pharmaceutical forms -- 7.4.1 Eye drops -- 7.4.2 Emulsions and ointments -- 7.4.3 Contact lenses -- 7.4.4 In situ forming gels -- 7.4.5 Implants/inserts -- 7.5 Ocular pharmacokinetics -- 7.6 Polymers. , 7.7 Natural polymers -- 7.7.1 Chitosan -- 7.7.2 Hyaluronic acid -- 7.7.3 Alginate -- 7.7.4 Cellulose -- 7.7.5 Collagen -- 7.7.6 Gelatin -- 7.7.7 Guar gum -- 7.8 Synthetic polymers -- 7.8.1 Poly(lactic-co-glycolic acid) -- 7.8.2 Poly-(caprolactone) -- 7.8.3 Poly-(ethylene glycol) -- 7.8.4 Carbomers -- 7.8.5 Eudragit -- 7.8.6 Poloxamers (Pluronic, Kolliphor) -- 7.9 Hybridization -- 7.10 Natural polymers-natural polymers hybridations -- 7.10.1 Hyaluronic acid -- 7.10.2 Chitosan -- 7.10.3 Alginate -- 7.11 Natural polymer-synthetic polymer hybridations -- 7.11.1 Chitosan -- 7.11.2 Hyaluronic acid -- 7.11.3 Cellulose -- 7.11.4 Guar gum -- 7.11.5 Gelatin -- 7.11.6 Collagen -- 7.11.7 Other polymers -- 7.12 Hybridizations of synthetic polymers -- 7.12.1 Polyethylene glycol and polylactic acid -- 7.12.2 Polyethylene glycol + poly(lactic-co-glycolic acid) -- 7.12.3 Polyethylene glycol and caprolactam derivatives -- 7.12.4 Polyethylene glycol and other synthetic polymers -- 7.12.5 Other synthetic polymers -- 7.13 Summary -- References -- 8 Hybrid polymeric scaffolds for brain applications: locoregional glioblastoma therapy -- 8.1 Introduction -- 8.2 Polymeric and hybrid polymeric scaffolds for locoregional glioblastoma treatment -- 8.2.1 Systems for local drug delivery in nonresected tumor -- 8.2.2 Scaffolds for local drug delivery in glioblastoma resection cavity -- 8.2.2.1 How to exploit scaffolds to treat brain cancer? -- 8.2.2.2 Which scaffold types? -- Compressed wafers -- Nanofibers -- Hydrogels -- Porous scaffolds -- 8.3 Combining nanodelivery and scaffolds -- 8.3.1 Nanoparticles against brain diseases and glioblastoma -- 8.3.2 Polymeric nanoparticle-integrated scaffolds against glioblastoma -- 8.3.2.1 Scaffolds integrating nanoparticles: an overview -- 8.3.2.2 In vitro and in vivo applications for potential glioblastoma therapy. , 8.4 Polymeric scaffolds for immunobioengineering: empowering CAR-T cell therapy with biomaterials.
    Weitere Ausg.: ISBN 9780443155642
    Weitere Ausg.: ISBN 044315564X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0443154678?
Meinten Sie 044315564x?
Meinten Sie 0443152608?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz