Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    UID:
    almahu_9949984853802882
    Umfang: 1 online resource (506 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443220500 , 0443220506
    Anmerkung: Intro -- Cellulose-Based Hydrogels: Production, Properties, and Applications -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Cellulose and its derivatives: Fundamental chemistry, structure, properties, and applications -- 1.1. Introduction -- 1.2. General chemistry -- 1.2.1. Structure -- 1.2.1.1. Structure at the molecular level -- 1.2.1.2. Structure in the supramolecular level -- 1.2.1.3. Structure at the morphological level -- 1.2.2. Properties -- 1.2.2.1. Mechanical properties -- 1.2.2.2. Cellulose solubility -- 1.2.2.3. Hygroscopic properties of cellulose -- 1.2.2.4. Toxicity -- 1.2.3. Cellulose derivatives: Specific features of the reactions of cellulose -- 1.2.3.1. Cellulose ether (CE) -- 1.2.3.2. Methyl cellulose -- 1.2.3.3. Ethyl cellulose -- 1.2.3.4. Hydroxyethyl cellulose -- 1.2.3.5. Hydroxypropyl cellulose -- 1.2.3.6. Cellulose ester -- 1.2.3.7. Cellulose acetate -- 1.2.3.8. Cellulose nitrate -- 1.2.3.9. Cellulose sulfate -- 1.2.3.10. Silyl cellulose -- 1.2.3.11. Cellulose sulfonate -- 1.2.3.12. Aminocelluloses -- 1.3. Applications -- 1.3.1. Applications in the biomedical field -- 1.3.1.1. Tissue engineering -- 1.3.1.2. Drug delivery -- 1.3.1.3. Wound dressing -- 1.3.2. Applications in food industry -- 1.3.3. Applications in cosmetics -- 1.3.4. Applications in electronic devices -- 1.3.5. Applications in civil engineering -- 1.3.6. Applications in water treatment -- 1.4. Conclusion -- References -- Chapter 2: Design, synthesis approaches, and surface functionalization of cellulose-based hydrogels -- 2.1. Introduction -- 2.2. Properties of CBHs -- 2.2.1. Biocompatibility and degradability -- 2.2.2. Size and shape -- 2.2.3. Drug-loading capability -- 2.2.4. Swelling property in water -- 2.3. CBHs multifunctional characteristics -- 2.4. CBHs in vivo behavior -- 2.5. Advantages and disadvantages of CBH. , 2.6. Classification of CBHs -- 2.6.1. Stimuli-responsive and nonresponsive -- 2.7. Synthesis methods of CBHs -- 2.7.1. Polymerization of monomers on a standardized level -- 2.7.2. Physical self-assembly of interactive polymers -- 2.7.3. Cross-linking of preformed polymers technique -- 2.7.4. Template-assisted nanofabrication -- 2.8. Functionalized CBHs -- 2.8.1. Physically cross-linked and functionalized CBHs -- 2.8.2. Chemically cross-linked and functionalized CBHs -- 2.8.3. Liposome modified CBHs -- 2.8.4. Hybrid functionalized CBHs -- 2.9. Surface functionalized CBHs -- 2.10. Application of CBHs -- 2.10.1. Drug-controlled release -- 2.10.2. Protein and gene delivery -- 2.10.3. Utilization of CBHs in hygiene, cosmeceuticals, and various other fields -- 2.10.4. Superabsorbents for personal hygiene products -- 2.10.5. Water reservoirs in agriculture -- 2.11. Future perspectives of CBHs -- 2.12. Conclusion -- References -- Chapter 3: Spectroscopic and microscopic characterization of cellulose-based hydrogels -- 3.1. Introduction -- 3.2. Characterization of CBH -- 3.2.1. Different aspects of characterization of CBH -- 3.2.1.1. Chemical composition and structure -- 3.2.1.2. Porosity and pore size distribution -- 3.2.1.3. Swelling behavior -- 3.2.1.4. Mechanical properties -- 3.2.1.5. Biocompatibility and biodegradability -- 3.2.1.6. Drug release behavior -- 3.2.1.7. Thermal properties -- 3.2.2. Spectroscopic and microscopic techniques -- 3.2.2.1. Microscopic characterization of CBH -- 3.2.2.1.1. Scanning electron microscopy (SEM) -- 3.2.2.1.2. Transmission electron microscopy (TEM) -- 3.2.2.1.3. Atomic force microscopy (AFM) -- 3.2.2.2. Spectroscopic characterization of CBHs -- 3.2.2.2.1. UV-visible spectroscopy -- 3.2.2.2.2. Fluorescence spectroscopy (FS) -- 3.2.2.2.3. Fourier transform infrared spectroscopy (FTIR). , 3.2.2.2.4. X-ray photoelectron spectroscopy (XPS) -- 3.2.2.2.5. Nuclear magnetic resonance (NMR) -- 3.2.2.2.6. Time-of-flight secondary ion mass spectrometry (ToF SIMS) -- 3.2.3. Scope of advancement in spectroscopic and microscopic techniques -- 3.3. Conclusion -- References -- Chapter 4: Chemical, mechanical, thermal, and rheological properties of cellulose-based hydrogels -- 4.1. Chemical properties of cellulose-based hydrogels -- 4.1.1. Hydrogels from natural cellulose -- 4.1.1.1. Hydrogels from cellulose derivatives -- 4.1.1.2. Hybrid hydrogels from cellulose -- 4.1.2. Crosslinking in cellulose hydrogels -- 4.1.2.1. Physical crosslinking -- 4.1.2.2. Chemical crosslinking -- 4.1.2.3. Polymerization methods -- 4.1.2.4. Dual crosslinking/double networks -- 4.2. Mechanical properties -- 4.3. Thermal properties -- 4.4. Rheological properties -- 4.5. Conclusion -- References -- Chapter 5: Cellulose-based stimuli-responsive and self-healing hydrogels -- 5.1. Introduction -- 5.2. Cellulose: Physical, chemical, and mechanical properties -- 5.3. Hydrogel and its properties -- 5.4. Cellulose-based hydrogels (CBH) -- 5.5. Cellulose-based self-healing hydrogels -- 5.6. Cellulose-based stimuli-responsive hydrogels -- 5.6.1. Thermo-responsive -- 5.6.2. pH-responsive -- 5.6.3. Magnetic responsive -- 5.6.4. Photo-responsive -- 5.6.5. Multiresponsive -- 5.7. Applications of cellulose-based stimuli responsive and self-healing hydrogels -- 5.7.1. Tissue engineering -- 5.7.2. Drug delivery -- 5.7.3. Wound healing -- 5.7.4. Smart materials -- 5.7.5. Other applications -- 5.8. Conclusion and future prospectives -- References -- Chapter 6: Cellulose-based nanocomposite hydrogels with metal nanoparticles -- 6.1. An overview -- 6.2. Preparation of cellulose nanocomposite hydrogels with metal nanoparticles -- 6.2.1. Integrating various components. , 6.2.2. In situ metal salt reduction by an external reducing agent -- 6.2.3. Metal salt reduction by reducing groups of cellulose -- 6.2.4. Photo-induced metal deposition -- 6.2.5. Electrostatic assembly -- 6.3. Characterization of cellulose nanocomposite hydrogels with metal nanoparticles -- 6.3.1. Microscopic analysis -- 6.3.2. Scattering analysis -- 6.3.3. Spectroscopic analysis -- 6.4. Properties of metal-cellulose nanocomposite hydrogels -- 6.4.1. Silver nanoparticles -- 6.4.2. Gold nanoparticles -- 6.4.3. Copper nanoparticles -- 6.4.4. Zinc oxide nanoparticles -- 6.4.5. Copper oxide nanoparticles -- 6.4.6. Iron oxide nanoparticles -- 6.5. Applications based on cellulose-based nanocomposite hydrogels with metal nanoparticles -- 6.5.1. Application as a catalyst -- 6.5.1.1. Photocatalysis -- 6.5.1.2. Organic transformations -- 6.5.2. Magnetic and conductive materials -- 6.5.2.1. Magnetic materials -- 6.5.2.2. Conductive strain-sensing materials -- 6.5.3. Energy applications -- 6.5.4. Biomedical application -- 6.5.4.1. Antimicrobial hydrogels containing metal nanoparticles -- 6.5.4.2. Drug delivery -- 6.5.4.3. Wound healing and wound dressing -- 6.5.4.4. Tissue engineering -- 6.6. Conclusion and future prospective -- References -- Chapter 7: Cellulose hybrid hydrogels with 2D nanomaterials -- 7.1. Introduction -- 7.2. 2D nanomaterials -- 7.3. Classification of 2D nanomaterials -- 7.3.1. Carbon-based nanomaterials -- 7.3.2. Inorganic nanomaterials -- 7.3.3. Hybrid nanomaterials -- 7.4. Fabrication techniques -- 7.5. Cellulose-hydrogel hybrids with 2D nanomaterials -- 7.5.1. Cellulose-hybrid hydrogels with carbon nanomaterials -- 7.5.2. Hydrogel hybrids with inorganic nanomaterials -- 7.5.3. Hydrogel hybrids with hybrid nanomaterials -- 7.6. Conclusion -- References. , Chapter 8: 3D printing of cellulose-based hydrogels: Fabrication, properties, and applications -- 8.1. Introduction -- 8.2. Cellulose-based hydrogels (CBHs) -- 8.2.1. Water-soluble cellulose derivatives -- 8.2.2. CBHs and cross-linking strategies -- 8.3. 3D printing technology -- 8.3.1. 3D printing methods of CBHs -- 8.3.2. 3D printing of hydrogels -- 8.3.3. Methods for fabrications of 3D scaffolds -- 8.3.3.1. Printing with lasers -- 8.3.3.1.1. Stereolithography -- 8.3.3.1.2. Polymerization using two photons -- 8.3.3.1.3. Forward transfer induced by laser -- 8.3.3.2. Printing by extrusion -- 8.3.3.3. Inkjet technology -- 8.4. 3D printing of cellulose-based hydrogels: Fabrication -- 8.5. Properties and application of 3D-printed CBHs -- 8.5.1. Characteristics of CBHs printed in 3D -- 8.5.1.1. Biocompatibility -- 8.5.1.2. Biodegradability -- 8.5.1.3. Mechanical strength -- 8.5.1.4. Porosity and interconnectivity -- 8.5.1.5. Printability -- 8.5.1.6. Surface functionalization -- 8.5.2. 3D-printed cellulosic hydrogel applications -- 8.5.2.1. Tissue engineering -- 8.5.2.2. Drug delivery systems -- 8.5.2.3. Cardiovascular equipment -- 8.5.2.4. Wound healing -- 8.5.2.5. Orthopedic implants -- 8.5.2.6. Neural tissue engineering -- 8.5.2.7. Water treatment -- 8.6. Challenges and prospective -- 8.7. Conclusion -- References -- Chapter 9: Cellulose-based antimicrobial hydrogels -- 9.1. Introduction -- 9.2. Types of cellulose-based hydrogels -- 9.2.1. Plant cellulose-based hydrogels -- 9.2.2. Bacterial cellulose-based hydrogels -- 9.3. Applications of cellulose-based antimicrobial hydrogels -- 9.3.1. Biomedical applications -- 9.3.1.1. Wound dressing -- 9.3.1.2. Antibiotic delivery -- 9.3.1.3. Urogenital tract infections -- 9.3.2. Environmental applications -- 9.3.2.1. Water treatment -- 9.3.2.2. Agricultural applications -- 9.3.3. Industrial applications. , 9.3.3.1. Food industries.
    Weitere Ausg.: ISBN 9780443220494
    Weitere Ausg.: ISBN 0443220492
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0443220476?
Meinten Sie 0443220557?
Meinten Sie 0443220565?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz