UID:
almahu_9949996610002882
Umfang:
1 online resource (422 pages)
Ausgabe:
1st ed.
ISBN:
9780443239991
,
0443239991
Serie:
Foundations and Frontiers in Enzymology Series
Anmerkung:
Intro -- Whole-Cell Biocatalysis: Fundamentals and Applications -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Chapter 1: Advantages and new potential applications of whole-cell biocatalysis -- 1. Introduction -- 1.1. History of whole-cell biocatalysis development -- 1.2. Technical advances and economic advantages of whole-cell biocatalysis -- 1.3. Reaction media in whole-cell biocatalysis -- 1.4. Main microorganisms used as whole-cell factories -- 2. Key advances and potential applications -- 2.1. Cell permeabilization -- 2.2. Cell immobilization -- 2.3. Metabolic engineering -- 2.4. Cascade reactions -- 2.5. Chemoenzymatic synthesis -- 2.6. Sustainable manufacturing -- 2.7. Pharmaceutical production -- 2.8. Biodegradation and bioremediation -- 2.9. Renewable energy production -- 3. Trends and perspectives -- References -- Chapter 2: Reprogramming microbial cells to improve the production of biopharmaceuticals and fine chemicals -- 1. Introduction to molecular genetics in the production of chemical and pharmaceutical substances -- 1.1. Significance of chemical and pharmaceutical substance production in the industry and their impact on the global economy -- 1.2. Use of microorganisms in the production of chemical and pharmaceutical substances, with emphasis on fungi -- 1.3. Improving fungal strains through classical genetic techniques with emphasis on antibiotics -- 1.4. Reasons for the use of molecular genetic techniques -- 2. Classic molecular cloning techniques -- 2.1. Molecular cloning: A clear definition -- 2.2. Cloning of genes and DNA fragments -- 2.3. DNA and complementary DNA (cDNA) libraries -- 2.4. Featured examples of molecular cloning in antibiotic production -- 3. Gene dosage optimization -- 3.1. Gene dosage and modulation of gene dosage.
,
3.2. Gene dosage optimization in industrial production: Importance and examples -- 3.3. Other alternatives: E.g., increasing precursor availability and/or improving precursor and penicillin transport -- 4. Advanced genetic engineering tools -- 4.1. Advances in genetic engineering -- 4.2. High-throughput sequencing (NGS) techniques -- 4.3. Promoters and RBS (bio-bricks) libraries -- 4.4. Synthetic biology -- 4.5. CRISPR-Cas9 technology -- 5. Cell factories for whole-cell biocatalysis -- 5.1. Minimal cell factories -- 5.2. Robust cell factories -- 5.3. Schemes for autonomous control of the metabolic fluxes and induction of product synthesis -- 6. The future of molecular genetics in the production of chemical and pharmaceutical substances -- References -- Chapter 3: Mitigation of greenhouse gas emissions from biogas-producing facilities: A novel whole-cell technology platfor ... -- 1. Introduction -- 2. GHG emissions from biogas-producing facilities -- 3. Conventional aerobic biotechnologies for treating residual dissolved methane -- 3.1. Aerobic methanotrophic metabolism -- 3.2. Packed bed reactors and two-phase partitioning systems -- 3.3. Aerobic membrane bioreactors -- 4. Whole-cell technology platform for anaerobic methane oxidation -- 4.1. Fundamentals and process microbiology of the N-AOM process -- 4.2. Bioreactors and operating conditions reported for N-AOM implementation -- 5. Perspectives -- References -- Chapter 4: Computational metabolic engineering using genome-scale metabolic models and constraint-based methods -- 1. Defining metabolic engineering -- 2. Microbial cell factory -- 3. Strategies for designing microbial cell factories -- 4. The engineering cycle -- 5. The principles for the calculation of metabolic fluxes -- 6. Linear programming for metabolic network modeling -- 7. Genome-scale mathematical modeling.
,
8. Reconstruction of the metabolic model -- 9. Metabolic engineering and systems biology -- 10. Data integration -- 11. Metabolic engineering and systems biology strategies -- References -- Chapter 5: Whole-cell biocatalysis in nonconventional media -- 1. Introduction -- 2. Nonconventional media used for biocatalysis -- 2.1. Whole-cell function in nonconventional media -- 3. Reaction and transport mechanisms in nonconventional media -- 3.1. Partitioning bioreactors -- 3.2. Solid-gas bioreactors -- 4. Applications of reaction in nonconventional media -- 5. Conclusions -- References -- Chapter 6: Nanostructured magnetic systems in whole-cell biocatalysis -- 1. Introduction -- 2. Coated magnetic nanoparticles and their properties for catalysis -- 3. Mechanisms of interactions between cells and magnetic nanoparticles -- 4. Toxicity of magnetic nanoparticles on microbial cells -- 5. Application of magnetic nanoparticles in catalysis with bacteria and yeast -- 6. Surface adhesion fermentation using magnetic nanoparticles: Advantages and disadvantages -- 7. Scale-up considerations -- 8. Hyperthermia with magnetic nanoparticles and its possible application -- 9. Future perspectives -- Author contributions -- References -- Chapter 7: Filamentous fungi as biopharmaceutical protein factories -- 1. Protein secretion in filamentous fungi -- 2. Co- or posttranslational transport from ribosome to ER -- 3. Folding and polypeptide modifications -- 4. Golgi complex and O-glycosylation -- 5. SpitzenkÖrper -- 6. Biopharmaceutical protein production in filamentous fungi -- 7. Genetic tools for recombinant protein production in filamentous fungi -- 8. Concluding remarks -- References -- Chapter 8: Proteomic analysis: Application to the study of signal transduction pathways in Penicillium chrysogenum an -- 1. About Penicillium chrysogenum and Acremonium chrysogenum.
,
2. Cell signaling -- 3. Proteomics -- 3.1. Techniques employed in proteomic analysis -- 3.1.1. 2D-PAGE and 2D-DIGE -- 3.1.2. Label-free technique -- 3.2. Proteomic analysis of cell signaling pathways in P. chrysogenum -- 3.2.1. Pga1-mediated signaling regulates central metabolic protein expression -- 3.2.2. Ca2+-mediated cell signaling regulates peroxisome protein abundance and increases penicillin production in P. chry ... -- 3.2.3. Cell signaling of the polyamines 1-3 diaminopropane and spermidine causes changes in the intracellular proteome an ... -- 4. Conclusions -- References -- Chapter 9: Fungal lipase obtained by surface adhesion fermentation using magnetic chitosan-coated nanoparticles -- 1. Introduction -- 2. Materials and methods -- 2.1. Microorganisms and crop development -- 2.2. Support preparation -- 2.3. Characterization of the immobilization process of A. niger spores on NPM-Q -- 2.4. Surface adhesion fermentation (SAF) -- 2.5. Assay for the determination of lipase activity -- 3. Results and discussion -- 3.1. Interaction characterization of A. niger spores and NPM-Q -- 3.2. Comparison of lipase production by submerged fermentation and surface-attachment fermentation -- 4. Conclusion -- References -- Chapter 10: In vitro plant cultures as a viable biotechnological tool for the biosynthesis of steroidal hormones of cl -- 1. Introduction -- 1.1. Global prospects in the clinical use and industrial production of hormones -- 1.1.1. Global economic market income in hormones of clinical relevance -- 1.1.2. Conventional techniques used for industrial production of hormones -- Biotransformation cell reactions -- Disadvantages of conventional techniques -- 1.1.3. Alternative in vitro cell culture techniques through biotechnological tools -- 1.2. Biosynthesis pathways of steroid structures in plant cells -- 1.2.1. Secondary metabolism of plants.
,
1.2.2. Mevalonate and nonmevalonate pathways, biosynthesis of plant-based steroid structures -- 1.2.3. Phytosterols and brassinosteroids -- 1.2.4. Clinical interest of hormonal structures derived from bioactive secondary metabolites -- 1.2.5. Final yields of plants bioactive secondary metabolites in the wild -- 2. Aim of the chapter -- 3. Methodology -- 4. Results -- 4.1. In vitro plant cell cultures by biotechnological techniques -- 4.1.1. Mevalonate and nonmevalonate pathways that biosynthesize plant-based steroids -- 4.1.2. Types of techniques for in vitro plant cell culture -- Cell suspension cultures -- 4.1.3. Final yields of secondary metabolites biosynthesized through in vitro cultures -- 4.2. Analytical methods applied to secondary metabolites produced by plant cell cultures -- 4.2.1. Techniques for chemical characterization -- Gas chromatography -- High-performance liquid chromatography (HPLC) -- Mass spectrometry -- 4.2.2. Isolation and purification processes -- Open-column chromatography -- Preparative plate chromatography -- 4.2.3. Progesterone and derivatives -- 5. Discussion -- 6. Conclusions -- Disclaimer -- 1Introduction1.1Global prospects in the clinical use and industrial production of hormonesIn the last 20ye -- References -- Chapter 11: Whole-cell biocatalysis for large-scale production -- 1. Introduction -- 2. Design of whole-cell biocatalysts -- 2.1. The optimization and design of biosynthetic pathways -- 2.2. Improvement of pathway flux -- 2.3. Dynamic regulation of enzyme concentrations -- 2.4. Enhanced urban transportation -- 3. Biocatalysis of whole cells in biphase media -- 3.1. Biphasic media-catalyzed lipase -- 3.2. Reactions facilitated by reductase in aqueous-organic media -- 3.3. Conclusions -- 4. Immobilization of whole-cell catalyst -- 4.1. Strategy for entrapment and encapsulation -- 4.2. Adhesion technique.
,
4.3. The covalent coupling method.
Weitere Ausg.:
ISBN 9780443239984
Weitere Ausg.:
ISBN 0443239983
Sprache:
Englisch
Bookmarklink