UID:
almahu_9949987785202882
Umfang:
1 online resource (0 pages)
Ausgabe:
First edition.
ISBN:
9780443240218
,
0443240213
Serie:
Emerging Methodologies and Applications in Modelling, Identification and Control Series
Anmerkung:
Front Cover -- Control of Underactuated Mechanical Systems -- Copyright -- Contents -- List of figures -- About the series editor -- About the authors -- Preface -- I General context and case study -- 1 Introduction and general context of underactuated mechanical systems -- 1.1 Introduction -- 1.2 Classification of mechanical systems -- 1.2.1 Fully actuated -- 1.2.2 Redundant -- 1.2.3 Underactuated -- 1.3 Why research underactuated mechanical systems? -- 1.3.1 First- and second-order holonomic constraints -- 1.3.1.1 Example 1 -- 1.3.1.2 Example 2 -- 1.3.2 Nonlinear dynamics and coupled inputs -- 1.3.3 Non-minimum-phase system -- 1.3.4 Uncertainties and parametric variations -- 1.4 Stabilization problem -- 1.4.1 Concepts of stabilization -- 1.4.2 Basic ideas -- 1.4.3 Illustrative example -- 1.5 Stable limit cycle generation problem -- 1.5.1 Definition -- 1.5.1.1 Periodic trajectory -- 1.5.2 Stability of a limit cycle -- 1.5.3 Illustrative example of limit cycles -- 1.5.3.1 Pendulum -- 1.5.3.2 Limit cycle walking -- 1.6 Underactuation in a broad range of applications -- 1.6.1 Aerospace underactuated systems -- 1.6.2 Flexible systems -- 1.6.3 Locomotion systems -- 1.6.4 Underactuation in marine vehicles -- 1.6.5 Underactuated mechanical system for education purposes -- 1.7 Literature review about existing control strategies -- 1.7.1 Passivity-based control -- 1.7.2 Backstepping control -- 1.7.3 Model predictive control -- 1.7.4 Sliding mode control -- 1.7.5 Intelligent controllers -- 1.8 Conclusion -- References -- 2 The inertia wheel inverted pendulum case study -- 2.1 Introduction -- 2.2 System's detailed description -- 2.3 Real-life applications -- 2.4 Mathematical modeling of the system -- 2.4.1 Dynamic model -- 2.4.2 Open-loop system -- 2.4.3 Port-Hamiltonian model -- 2.4.4 Linearized model -- 2.5 Experimental setup and implementation issues.
,
2.5.1 Mechanical part -- 2.5.2 Electrical part -- 2.5.3 Software description -- 2.5.4 Description of the evaluation scenarios -- 2.5.4.1 Case of rejection of punctual disturbances -- 2.5.4.2 Case of persistent disturbances -- 2.6 Conclusion -- References -- II Control solutions for the stabilization problem -- 3 A revisited adaptive sliding mode control scheme -- 3.1 Introduction -- 3.2 The conventional first-order SMC approach -- 3.3 Adaptive sliding mode control for nonlinear systems -- 3.4 Proposed adaptive sliding mode control for class-I 2-Dof UMSs -- 3.5 Design of sliding mode controller -- 3.6 Closed-loop stability analysis -- 3.7 Numerical simulation results -- 3.7.1 Scenario 1: Rejection of external disturbances -- 3.7.2 Scenario 2: Robustness towards parametric uncertainties -- 3.8 Real-time experimental results -- 3.8.1 Scenario 1: Nominal case -- 3.8.2 Scenario 2: External disturbances rejection -- 3.9 Conclusion -- References -- 4 Nonlinear RISE feedback control scheme -- 4.1 Introduction -- 4.2 Class I of underactuated mechanical systems -- 4.2.1 Noncollocated partial feedback linearization -- 4.2.2 Collocated partial feedback linearization -- 4.2.3 Normal forms of underactuated mechanical systems -- 4.3 RISE controller for SISO systems -- 4.4 RISE control for class I -- 4.5 Closed-loop stability analysis -- 4.6 State estimation with robust Levant differentiator -- 4.7 Numerical simulation results -- 4.7.1 Scenario 1: Robustness towards parametric uncertainties -- 4.7.2 Scenario 2: External disturbances rejection -- 4.8 Real-time experimental results -- 4.8.1 Scenario 1: Nominal case -- 4.8.2 Scenario 2: Disturbances rejection -- 4.9 Conclusion -- References -- 5 Model reference adaptive IDA-PBC approach -- 5.1 Introduction -- 5.2 Standard IDA-PBC controller -- 5.2.1 Control law -- 5.2.2 PI-IDA-PBC controller.
,
5.3 Model reference adaptive IDA-PBC controller -- 5.4 Closed-loop stability analysis -- 5.5 Numerical simulation results -- 5.5.1 Scenario 1: Punctual disturbance rejection -- 5.5.2 Scenario 2: Persistent disturbance rejection -- 5.6 Real-time experimental results -- 5.6.1 Scenario 1: Nominal case -- 5.6.2 Scenario 2: Persistent disturbances rejection -- 5.7 Conclusion -- References -- III Control solutions for stable limit cycle generation problem -- 6 Partial feedback linearization and optimization -- 6.1 Introduction -- 6.2 Motivation and proposed control scheme -- 6.2.1 Partial feedback linearization principle -- 6.2.2 Reference trajectory generation -- 6.2.3 Proposed control law -- 6.2.4 An illustrative example -- 6.2.4.1 Modeling -- 6.2.4.2 Partial feedback linearization -- 6.2.4.3 Control law -- 6.2.4.4 Linearized dynamics -- 6.2.4.5 Internal dynamics -- 6.3 Stabilization of the internal dynamics -- 6.3.1 Optimization of reference trajectories -- 6.3.2 Estimation and external disturbance rejection -- 6.4 Application: inertia wheel inverted pendulum -- 6.4.1 Reference trajectories generation -- 6.4.2 Control law -- 6.4.3 Optimization of reference trajectories -- 6.4.4 Estimation and rejection of persistent disturbances -- 6.5 Numerical simulation results -- 6.5.1 Scenario 1: Nominal case -- 6.5.2 Scenario 2: Point disturbance rejection -- 6.5.3 Scenario 3: Persistent disturbances rejection -- 6.5.3.1 Persistent disturbances not estimated -- 6.5.3.2 Estimated persistent disturbances -- 6.6 Real-time experimental results -- 6.6.1 Scenario 1: Nominal case without external disturbances -- 6.6.2 Scenario 2: Point external disturbance rejection -- 6.6.3 Scenario 3: Persistent external disturbances rejection -- 6.7 Conclusion -- References -- 7 Nonlinear model predictive control -- 7.1 Introduction -- 7.2 Kangaroo underactuated hopping robot.
,
7.2.1 Jump cycle description -- 7.2.2 Kangaroo hopping robot design -- 7.2.3 Robot's dynamic modeling -- 7.2.3.1 Flight phase -- 7.2.3.2 Stance phase -- 7.2.3.3 Transitions between main phases -- 7.3 Control problem and related works -- 7.4 Background on model predictive control -- 7.4.1 Key elements of NMPC -- 7.4.2 Potential applications of NMPC -- 7.4.3 Main challenges -- 7.5 Proposed running controllers -- 7.5.1 Raibert's controller -- 7.5.1.1 Thrust control -- 7.5.1.2 Forward speed control -- 7.5.1.3 Body attitude control -- 7.5.2 Proposed NMPC running controller -- 7.5.2.1 Ballistic trajectory -- 7.5.2.2 Basic principle of the proposed control approach -- 7.5.2.3 Application to control a Kangaroo robot -- 7.6 Numerical simulations and results -- 7.6.1 Simulation environment -- 7.6.2 Simulation comparative study -- 7.7 Conclusion -- References -- 8 Dual model-free control -- 8.1 Introduction -- 8.2 Background on model-free control -- 8.2.1 Nonlinear system to be controlled -- 8.2.2 Control law -- 8.3 Proposed dual model-free control solution -- 8.3.1 Basic principle -- 8.3.2 Control design -- 8.4 Application to underactuated mechanical systems -- 8.4.1 Application 1: The cart-pole inverted pendulum -- 8.4.1.1 Dynamic model -- 8.4.1.2 Reference trajectories generation -- 8.4.1.3 Control law -- 8.4.1.4 Simulation results -- 8.4.2 Application 2: The pendubot -- 8.4.2.1 Dynamic model -- 8.4.2.2 Reference trajectories generation -- 8.4.2.3 Control law -- 8.4.2.4 Simulation results -- 8.4.3 Application 3: The inertia wheel inverted pendulum -- 8.4.3.1 Control law -- 8.4.3.2 Simulation results -- 8.4.3.3 Real-time experimental results -- 8.5 Conclusion -- References -- Index -- Back Cover.
Weitere Ausg.:
ISBN 9780443240201
Weitere Ausg.:
ISBN 0443240205
Sprache:
Englisch
Bookmarklink