UID:
almahu_9949983965202882
Umfang:
1 online resource (457 pages)
Ausgabe:
First edition.
ISBN:
9780443240706
,
0443240701
Inhalt:
This book, edited by Achinta Bera and Sunil Kumar, explores the current status, prospects, and challenges of hydrogen energy storage, with a particular focus on subsurface storage methods. It covers a wide range of topics including the properties and benefits of hydrogen as an energy carrier, various production methods, and the technological requirements for underground storage. The book also examines the safety, regulatory, and environmental impacts of hydrogen storage, and presents case studies to illustrate practical applications. It is intended for scientists, engineers, and policymakers interested in sustainable energy solutions.
Anmerkung:
Front Cover -- Subsurface Hydrogen Energy Storage -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- Summary -- 1 Introduction to underground hydrogen storage -- 1.1 Importance of hydrogen as an energy carrier -- 1.2 Understanding hydrogen: properties and characteristics -- 1.3 Hydrogen as an energy carrier -- 1.4 Energy storage: need and challenges -- 1.5 Introduction to underground hydrogen storage -- 1.6 Geological considerations for underground storage -- 1.6.1 Salt caverns -- 1.6.2 Storage perspective of salt cavern -- 1.6.3 Depleted hydrocarbon reservoirs -- 1.6.4 Storage perspectives of depleted hydrocarbon reservoir -- 1.6.5 Salt caverns and depleted hydrocarbon reservoirs storage capacity -- 1.6.6 Aquifers -- 1.6.7 Abandoned mines shafts -- 1.7 Technical requirements and challenges -- 1.7.1 Technical challenges -- 1.7.2 Economic challenges -- 1.7.3 Future market -- 1.7.3.1 Electricity industry -- 1.7.3.2 Mobility -- 1.7.3.3 Chemical industry -- 1.7.3.4 Natural gas industry -- 1.8 Regulatory and safety aspects and risks -- 1.9 Chapter summary and conclusions -- References -- Further reading -- 2 Hydrogen as an energy carrier -- 2.1 Introduction -- 2.2 Different energy sources and their limitations -- 2.3 Renewable/green energy versus nonrenewable/fossil-based energy -- 2.4 Why hydrogen versus renewable energy sources -- 2.4.1 Energy storage -- 2.4.2 Emission reduction -- 2.4.3 Energy density -- 2.4.4 Infrastructure and distribution -- 2.4.5 Efficiency and losses -- 2.5 Hydrogen versus fossil fuels -- 2.6 Hydrogen versus batteries -- 2.7 Hydrogen as a potential energy carrier and its importance -- 2.8 Applications of hydrogen as an energy carrier -- 2.9 Different methods of hydrogen production -- 2.9.1 Steam methane reforming.
,
2.9.2 Water and renewable-powered electrolysis -- 2.9.2.1 Water electrolysis -- 2.9.2.2 Renewable-powered electrolysis -- 2.9.3 Coal gasification and biomass gasification -- 2.9.4 Metal water reactions -- 2.10 Advancements in hydrogen production technologies -- 2.10.1 Water splitting technologies -- 2.10.2 Biomass technologies -- 2.11 Grades of hydrogen production -- 2.12 Conversion of hydrogen into electricity or energy -- 2.12.1 Fuel cells: electrochemical conversion of hydrogen -- 2.12.2 Combustion: hydrogen in gas turbines and internal combustion engines -- 2.12.2.1 Efficiency and conversion processes -- 2.13 Pure hydrogen as an energy carrier -- 2.14 Blending hydrogen with natural gas -- 2.15 Challenges and opportunities -- 2.16 Conclusions -- References -- 3 Hydrogen production using different methods -- 3.1 Introduction -- 3.1.1 Hydrogen production: principles and procedures -- 3.2 Hydrogen from fossil fuels -- 3.2.1 Hydrocarbon reforming -- 3.2.2 Steam reforming -- 3.2.3 Partial oxidation -- 3.2.4 Autothermal reforming -- 3.3 Hydrocarbon pyrolysis -- 3.4 Coal gasification -- 3.5 Hydrogen production from renewable resources -- 3.5.1 Biomass processes -- 3.5.2 Biological conversion processes -- 3.5.2.1 Bio-photolysis -- 3.5.3 Dark fermentation -- 3.5.4 Photo fermentation -- 3.5.5 Microbial electrolysis -- 3.5.6 Thermochemical conversion process -- 3.5.6.1 Biomass gasification -- 3.6 Water splitting -- 3.6.1 Electrolysis -- 3.6.2 Alkaline electrolyzer -- 3.6.3 Proton exchange membrane -- 3.6.4 Solid oxide electrolysis cell -- 3.7 Photoelectrochemical water splitting -- 3.8 Thermochemical water splitting -- 3.8.1 Sulfur-iodine (S-I) cycle -- 3.8.2 Copper-chlorine (Cu-Cl) cycle -- 3.9 Hydrogen distribution -- 3.10 Current application and cases -- 3.11 Challenges -- 3.12 Conclusion and future outlooks -- References -- 4 Hydrogen surface storage.
,
4.1 Introduction -- 4.2 Properties of hydrogen -- 4.3 Hydrogen economy -- 4.4 Hydrogen storage methods -- 4.4.1 Subsurface hydrogen storage -- 4.4.2 Surface hydrogen storage methods -- 4.4.3 Physical storage -- 4.4.4 Compressed hydrogen storage -- 4.4.5 Cryogenic hydrogen storage -- 4.4.6 Cryo-compressed hydrogen storage -- 4.4.7 Material-based storage -- 4.4.8 Adsorption storage -- 4.4.9 Chemical hydrogen storage -- 4.4.9.1 Ammonia -- 4.5 Challenges and future scope -- 4.6 Conclusions -- References -- 5 Navigating hydrogen storage and transport networks: grid connectivity and storage site logistics -- 5.1 Introduction -- 5.2 Hydrogen as fuel -- 5.3 Hydrogen production -- 5.3.1 Methods of H2 production -- 5.4 Transportation of hydrogen -- 5.4.1 Transportation through tankers -- 5.4.2 Transportation through pipeline -- 5.4.3 Hydrogen transfer using tube trailers -- 5.4.4 Hydrogen transportation through ships -- 5.5 Storage of hydrogen -- 5.5.1 Compression -- 5.5.2 Liquefaction -- 5.5.3 Material based storage -- 5.5.4 Geological hydrogen storage -- 5.6 Challenges in hydrogen used as a fuel -- 5.7 Environmental impact of H2 production, transportation, and storage methods -- 5.8 Conclusion -- References -- 6 Subsurface underground hydrogen storage -- 6.1 Introduction -- 6.1.1 Advantages and disadvantages of subsurface storage -- 6.2 Types of underground hydrogen storage and their efficacy in porous geological formations -- 6.2.1 Salt caverns -- 6.2.2 Rock caverns -- 6.2.3 Aquifers -- 6.2.4 Abandoned mines -- 6.2.5 Depleted natural gas and oil reservoirs -- 6.2.6 Porous geological formations versus caverns for hydrogen storage -- 6.2.7 Hydrocarbon reservoirs and their suitability -- 6.3 Caprock analysis: examining caprocks in depleted oil and gas reservoirs and aquifers -- 6.3.1 Caprock properties -- Fluid properties -- Rock attributes -- Pore size.
,
6.3.2 Types of caprocks in reservoirs and their effectiveness in storing hydrogen -- Shale caprocks -- Anhydrite caprocks -- Salt caprocks -- Operating conditions -- 6.3.3 Salt caverns -- 6.3.4 Rock caverns -- 6.3.5 Aquifers -- 6.3.6 Depleted reservoirs -- 6.3.7 Abandoned mines -- 6.4 Activities for underground hydrogen storage project: from identification to well engineering -- 6.4.1 Subsurface project identification -- 6.4.2 Operational planning -- 6.4.3 Well engineering -- 6.5 Conclusion and outlook -- References -- 7 Physics of hydrogen flow in porous media: two-phase (or multiphase) flow and transport of hydrogen in porous geological s... -- 7.1 Introduction -- 7.2 Fluid properties of hydrogen -- 7.3 Reservoir geometry, flow regimes, and rock properties -- 7.3.1 Flow regimes -- 7.3.2 Rock properties -- 7.3.3 Flow boundaries -- 7.4 Two-phase flow mechanism -- 7.4.1 Wettability and interfacial tension -- 7.4.2 Relative permeability and hysteresis -- 7.4.3 Displacement instabilities -- 7.5 Gas mixing behavior -- 7.5.1 Mobility and gravity effects -- 7.5.2 Molecular diffusion -- 7.5.3 Mechanical dispersion -- 7.6 Conclusions -- References -- 8 Physiochemical parametric considerations for optimal underground hydrogen storage -- 8.1 Introduction -- 8.2 Influencing physiochemical parameters concerning different types of underground hydrogen storage -- 8.2.1 Solid-based properties -- 8.2.1.1 Absolute permeability -- 8.2.1.2 Effective porosity -- 8.2.2 Fluid-based properties -- 8.2.2.1 Fluid density -- 8.2.2.2 Fluid viscosity -- 8.2.2.3 Fluid-fluid interfacial tension -- 8.2.2.4 Solubility -- 8.2.2.5 Diffusivity -- 8.2.3 Solid-fluid properties -- 8.2.3.1 Wettability -- 8.2.3.2 Solid-fluid interfacial tension -- 8.2.3.3 Capillary pressure -- 8.2.3.4 Relative permeability -- 8.2.3.5 Mobility ratio -- 8.2.3.6 Adsorption-desorption.
,
8.3 Prospects and challenges -- 8.4 Summary and recommendations -- References -- 9 Geochemical and geomechanical synergies during underground hydrogen storage schemes -- 9.1 Introduction -- 9.2 Fundamentals of fluid-fluid and rock-fluid interactions -- 9.2.1 Geochemical evaluations of hydrogen storage in porous media -- 9.2.2 Geomechanical aspects of hydrogen-mineral interaction during the hydrogen storage in geoformations -- 9.2.3 Cumulative effects of geochemical and geomechanics on the underground hydrogen storage system -- 9.3 Modeling and simulation -- 9.3.1 Geochemical reactions in underground hydrogen storage -- 9.3.2 Geomechanical modeling -- 9.4 Challenges and knowledge gap -- 9.5 Conclusions -- References -- 10 Microbial considerations/aspects of underground hydrogen storage -- 10.1 Introduction -- 10.2 Microbial impact on subterranean hydrogen storage -- 10.3 Microbial metabolism of hydrogen -- 10.3.1 Bacterial metabolism -- 10.3.1.1 Methanogenesis -- 10.3.1.2 Acetogenesis -- 10.3.1.3 Sulfate reduction -- 10.3.1.4 Iron-III reduction -- 10.3.2 Hydrogen oxidation due to microbial activities -- 10.3.3 The impact of environmental factors on microbial growth -- 10.3.3.1 Nutrients -- 10.3.3.2 Temperature -- 10.3.3.3 Pressure -- 10.3.3.4 Salinity -- 10.3.3.5 pH -- 10.3.3.6 Oxygen concentration -- 10.3.3.7 Inhibitors -- 10.4 Microbial growth and biofouling effects -- 10.4.1 Microbial-induced corrosion -- 10.4.2 Microbial-induced plugging -- 10.4.3 Microbial-induced mineral dissolution -- 10.5 Impacts on stored hydrogen quantity and quality -- 10.5.1 The change in the composition of a gas mixture -- 10.5.2 Souring and the subsequent generation of hydrogen sulfide -- 10.5.3 Potential hydrogen escape and consequences -- 10.6 Risk assessment and monitoring -- 10.7 Mitigation and control measures.
,
10.8 Underground hydrogen storage case studies with microbial activity.
Weitere Ausg.:
ISBN 9780443240713
Weitere Ausg.:
ISBN 044324071X
Sprache:
Englisch
Bookmarklink