Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Die Antwortzeit im Portal kann derzeit länger als üblich sein. Wir bitten um Entschuldigung.
Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Princeton :Princeton University Press,
    UID:
    almatuudk_9922632876102884
    Umfang: 1 online resource (258 p.)
    Ausgabe: Core Textbook
    ISBN: 9786612820892 , 9781282820890 , 1282820893 , 9781400824885 , 1400824885
    Serie: Annals of mathematics studies ; no. 150
    Inhalt: For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.
    Anmerkung: Description based upon print version of record. , pt. 1. Background material -- pt. 2. Twist sheaves, over an algebraically closed field -- pt. 3. Twist sheaves, over a finite field -- pt. 4. Twist sheaves over schemes of finite type over Z. , Issued also in print. , English
    Weitere Ausg.: ISBN 9780691091501
    Weitere Ausg.: ISBN 0691091501
    Weitere Ausg.: ISBN 9780691091518
    Weitere Ausg.: ISBN 069109151X
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Princeton, N.J. :Princeton University Press,
    Dazugehörige Titel
    UID:
    almatuudk_BV042522165
    Umfang: 1 Online-Ressource (264 S.).
    ISBN: 978-1-4008-2488-5
    Serie: Annals of Mathematics Studies number 150
    Anmerkung: Main description: For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-691-09150-1
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): L-Funktion ; Monodromie
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    Princeton : Princeton University Press
    UID:
    gbv_329851934
    Umfang: VIII, 249 S.
    ISBN: 0691091501 , 069109151X
    Serie: Annals of mathematics studies no. 150
    Anmerkung: Includes bibliographical references
    Weitere Ausg.: Online-Ausg. Katz, Nicholas M., 1943 - Twisted L-Functions and Monodromy. Princeton : Princeton University Press, 2002 ISBN 9781400824885
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Katz, Nicholas M., 1943 - Twisted L-Functions and Monodromy. (AM-150) Princeton : Princeton University Press, 2009 ISBN 9781400824885
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Katz, Nicholas M., 1943 - Twisted L-Functions and Monodromy Princeton, N.J. : Princeton University Press, 2002 ISBN 9781400824885
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    RVK:
    Schlagwort(e): Elliptische Kurve ; L-Funktion ; Monodromie ; L-Funktion ; Monodromiegruppe
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Princeton : Princeton University Press
    UID:
    gbv_737422475
    Umfang: Online-Ressource (237 p.)
    Ausgabe: Online-Ausg.
    ISBN: 9781400824885
    Serie: Annals of Mathematics Studies v.v. 150
    Inhalt: Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families. - Part IV: Twist Sheaves, over Schemes of Finite Type over ZChapter 9: Twisting by ""Primes"", and Working over Z; Chapter 10: Horizontal Results; References; Index. - For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curve
    Inhalt: For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in th
    Anmerkung: Description based upon print version of record , Cover; Title Page; Copyright Page; Table of Contents; Introduction; Part I: Background Material; Appendix to Chapter 1: A Result of Zalesskii; Chapter 2: Lefschetz Pencils, Especially on Cur; Chapter 3: Induction; Chapter 4: Middle Convolution; Part II: Twist Sheaves, over an Algebraically Closed Field; Chapter 5: Twist Sheaves and Their Monodromy; Part III: Twist Sheaves, over a Finite Field; Chapter 6: Dependence on Parameters; Chapter 7: Diophantine Applications over a Finite Field; Chapter 8: Average Order of Zero in Twist Families , Part IV: Twist Sheaves, over Schemes of Finite Type over ZChapter 9: Twisting by "Primes", and Working over Z; Chapter 10: Horizontal Results; References; Index;
    Weitere Ausg.: ISBN 0691091501
    Weitere Ausg.: ISBN 069109151X
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Katz, Nicholas M., 1943 - Twisted L-functions and monodromy Princeton : Princeton University Press, 2002 ISBN 0691091501
    Weitere Ausg.: ISBN 069109151X
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    RVK:
    Schlagwort(e): Elliptische Kurve ; L-Funktion ; Monodromie ; L-Funktion ; Monodromiegruppe ; Electronic books
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Princeton :Princeton University Press,
    UID:
    almahu_9948314663002882
    Umfang: viii, 249 p.
    Ausgabe: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Serie: Annals of mathematics studies ; no. 150
    Anmerkung: pt. 1. Background material -- pt. 2. Twist sheaves, over an algebraically closed field -- pt. 3. Twist sheaves, over a finite field -- pt. 4. Twist sheaves over schemes of finite type over Z.
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Buch
    Buch
    Princeton and Oxford :Princeton University Press,
    Dazugehörige Titel
    UID:
    almahu_BV014165477
    Umfang: viii, 249 Seiten.
    ISBN: 978-0-691-09151-8 , 0-691-09150-1 , 0-691-09151-X
    Serie: Annals of mathematics studies number 150
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-1-4008-2488-5
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): L-Funktion ; Monodromie
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Princeton :Princeton University Press,
    UID:
    edocfu_9958122896002883
    Umfang: 1 online resource (258 p.)
    Ausgabe: Core Textbook
    ISBN: 1-282-82089-3 , 9786612820892 , 1-4008-2488-5
    Serie: Annals of mathematics studies ; no. 150
    Inhalt: For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.
    Anmerkung: Description based upon print version of record. , pt. 1. Background material -- pt. 2. Twist sheaves, over an algebraically closed field -- pt. 3. Twist sheaves, over a finite field -- pt. 4. Twist sheaves over schemes of finite type over Z. , Issued also in print. , English
    Weitere Ausg.: ISBN 0-691-09150-1
    Weitere Ausg.: ISBN 0-691-09151-X
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Princeton :Princeton University Press,
    UID:
    edoccha_9958122896002883
    Umfang: 1 online resource (258 p.)
    Ausgabe: Core Textbook
    ISBN: 1-282-82089-3 , 9786612820892 , 1-4008-2488-5
    Serie: Annals of mathematics studies ; no. 150
    Inhalt: For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.
    Anmerkung: Description based upon print version of record. , pt. 1. Background material -- pt. 2. Twist sheaves, over an algebraically closed field -- pt. 3. Twist sheaves, over a finite field -- pt. 4. Twist sheaves over schemes of finite type over Z. , Issued also in print. , English
    Weitere Ausg.: ISBN 0-691-09150-1
    Weitere Ausg.: ISBN 0-691-09151-X
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 0691019401?
Meinten Sie 0691001502?
Meinten Sie 0691001901?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz