UID:
almahu_9948342717602882
Format:
1 online resource (various pagings) :
,
illustrations (some color).
ISBN:
9780750331678
,
9780750331661
Series Statement:
IOP ebooks. [2020 collection]
Content:
This book presents an in-depth look at lenses free of spherical aberrations and is provided using illustrative examples. Mathematical principles behind lenses free of spherical aberration are included with an introduction to set theory, the conics, continuity, real analysis and topology. Physical principles are covered as well as a step by step guide to mathematical model for deducing the general formula of the stigmatic lens, in order to design a singlet free of spherical aberration. Subsequently, the characteristics of these lenses and the equations that describes them are studied. Finally, several implications of these lenses are studied, such as freeform lenses, optical systems, axicons, telescopes and more. Scenarios with on-axis objects and off-axis objects are considered. Cases where the object is real or virtual, and the image is real or virtual are also presented. The book is a valuable resource for industrial specialists and academics in lens design and optics, and an insightful guide for optical physics students. Part of IOP Series in Emerging Technologies in Optics and Photonics.
Note:
"Version: 20200401"--Title page verso.
,
part I. A historical, mathematical and optical introduction. 1. A brief history of stigmatic lens design -- 1.1. The rise of geometrical optics -- 1.2. Optics of the ancient Greeks and Arab world -- 1.3. Snell, Descartes, Huygens, Newton and Fermat -- 1.4. 19th and 20th century -- 1.5. The computer era and the closure of a conjecture
,
2. A mathematical toolkit for stigmatic imaging -- 2.1. A mathematical toolkit -- 2.2. Set theory -- 2.3. Topological spaces -- 2.4. Metric spaces -- 2.5. The conics -- 2.6. Geometric algebra -- 2.7. Conclusions
,
3. An introduction to geometrical optics -- 3.1. Geometrical optics -- 3.2. The principle of least action -- 3.3. Reflection -- 3.4. Refraction -- 3.5. Two-dimensional Snell's law in geometric algebra -- 3.6. Three dimensions Snell's law in geometric algebra -- 3.7. Stigmatism -- 3.8. Optical aberrations -- 3.9. Conclusions
,
part II. Stigmatic singlets. 4. On-axis stigmatic aspheric lens -- 4.1. Introduction -- 4.2. Finite object finite image -- 4.3. Evolution tables of the shape of on-axis stigmatic lens -- 4.4. Stigmatic aspheric collector -- 4.5. Stigmatic aspheric collimator -- 4.6. The single-lens telescope -- 4.7. Conclusions
,
5. Geometry of on-axis stigmatic lenses -- 5.1. Introduction -- 5.2. Lens free of spherical aberration finite-finite case -- 5.3. Lens free of spherical aberration infinite-finite case -- 5.4. Lens free of spherical aberration finite-infinite case -- 5.5. Lens free of spherical aberration infinite-infinite case -- 5.6. Conclusions
,
6. Topology of on-axis stigmatic lenses -- 6.1. Introduction -- 6.2. The topology of on-axis stigmatic lens -- 6.3. Example of the topological properties -- 6.4. Conclusions
,
7. The gaxicon -- 7.1. Introduction -- 7.2. Geometrical model -- 7.3. Gallery of axicons -- 7.4. Conclusions
,
8. On-axis spherochromatic singlet -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Illustrative examples -- 8.4. Spherochromatic collimator -- 8.5. Galley of spherochromatic collimators -- 8.6. Discussion and conclusions
,
part III. Stigmatic and astigmatic freeform singlets. 9. On-axis stigmatic freeform lens -- 9.1. Introduction -- 9.2. Finite image-object -- 9.3. The freeform collector lens -- 9.4. The freeform collimator lens -- 9.5. The beam-shaper -- 9.6. Conclusions
,
10. On-axis astigmatic freeform lens -- 10.1. Introduction -- 10.2. Mathematical model -- 10.3. Galley of examples -- 10.4. Conclusions
,
part IV. Stigmatic optical systems. 11. On-axis sequential optical systems -- 11.1. Introduction -- 11.2. Mathematical model -- 11.3. Illustrative examples -- 11.4. Conclusions
,
12. On-axis sequential refractive-reflective telescope -- 12.1. Introduction -- 12.2. Examples -- 12.3. Conclusions
,
part V. Aplanatic singlets. 13. Off-axis stigmatic lens -- 13.1. Introduction -- 13.2. Mathematical model -- 13.3. Illustrative examples -- 13.4. Mathematical implications of a non-symmetric solution -- 13.5. Conclusions
,
14. Aplanatic singlet lens: general setting, part 1 -- 14.1. Introduction -- 14.2. Off-axis stigmatic collector lens -- 14.3. On-axis stigmatic lens for an arbitrary reference path -- 14.4. The merging of two solutions -- 14.5. Examples -- 14.6. Conclusions
,
15. Aplanatic singlet lens: general setting, part 2 -- 15.1. Introduction -- 15.2. Off-axis stigmatic lens -- 15.3. On-axis stigmatic lens for an arbitrary reference path -- 15.4. The merging of two solutions -- 15.5. Examples -- 15.6. Conclusions.
,
Also available in print.
,
Mode of access: World Wide Web.
,
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
Additional Edition:
Print version: ISBN 9780750331654
Additional Edition:
ISBN 9780750331685
Language:
English
DOI:
10.1088/978-0-7503-3167-8
URL:
https://iopscience.iop.org/book/978-0-7503-3167-8
Bookmarklink