Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Die Antwortzeit im Portal kann derzeit länger als üblich sein. Wir bitten um Entschuldigung.
Export
Filter
Type of Medium
Language
Region
Subjects(RVK)
Access
  • 1
    UID:
    almafu_9961213511702883
    Format: 1 online resource (263 S.)
    Edition: 5th ed. 2023.
    ISBN: 9783648169537 , 364816953X
    Series Statement: Haufe Fachbuch Series
    Content: Berufs- und Quereinsteiger:innen erhalten hier einen fundierten Einstieg in das Thema Marketing. Die Autoren gehen auf die Produkt- und Preispolitik ein, erläutern Vertriebsstrategien sowie Kommunikationsinstrumente. Sie zeigen, wie Marketingbudgets berechnet werden und wie Marketingcontrolling funktioniert. Dabei Klassisches Marketing kommt ebenso zur Sprache wie die vielfältigen Möglichkeiten im Online-Marketing. Inhalte: - Was ist Marketing und was können Unternehmen durch Marketing erreichen? - Worin unterscheiden sich Märkte und was sind die wichtigsten Differenzierungsfaktoren? - Schritt für Schritt zur Marketingkonzeption - Der Marketing-Mix und seine Elemente - So funktioniert erfolgreiches Customer Relationship Management Neu in der 5. Auflage: - Mobile Marketing - Social Media Marketing - Nachhaltigkeit im Marketing Digitale Extras: - Excel-Rechner - Checklisten - Formulare.
    Note: Cover -- Hinweis zum Urheberrecht -- Titel -- Impressum -- Inhaltsverzeichnis -- Vorwort -- 1 Was ist Marketing? -- 1.1 Hauptziel des Marketings: Überleben sichern -- 1.2 Was ist ein Markt, was ist ein Kunde? -- 1.3 Wettbewerb in gesättigten Märkten -- 1.4 Aufgaben und Besonderheiten des Marketings -- 1.5 Wieso ist Marketing für kleine und mittelständische Unternehmen wichtig? -- 1.6 Welche Rolle spielt das Internet für das Marketing? -- 2 Was will ich mit Marketing erreichen? -- 2.1 Optimale Problemlösungen für den Kunden -- 2.2 Schritte zum erfolgreichen Marketing -- 2.2.1 Wie Sie Ihr Unternehmen profilieren -- 2.2.2 Den Markt dynamisch bearbeiten -- 2.3 Nachfrage befriedigen ist gut, Nachfrage produzieren ist besser -- 3 Wie unterscheiden sich Märkte? -- 3.1 So erforschen Sie den Markt -- 3.1.1 Welche Wege der Informationserhebung sollten Sie gehen? -- 3.1.2 Welche Instrumente können Sie für die Marktforschung nutzen? -- 3.2 Die Marketingsituation -- 3.2.1 Schritt 1: Grenzen Sie Ihren Markt ab -- 3.2.2 Schritt 2: Klären Sie die vorhandenen Marktverhältnisse -- 3.2.3 Schritt 3: Ermitteln Sie den Bedarf -- 3.2.4 Schritt 4: Klären Sie die Wettbewerbssituation -- 3.2.5 Schritt 5: Klären Sie die Distributionssituation -- 3.2.6 Schritt 6: Klären Sie die Produktmerkmale -- 3.2.7 Schritt 7: Klären Sie Ihre Unternehmenssituation -- 3.2.8 Schritt 8: Klären Sie die Rahmenbedingungen -- 3.2.9 Welche Analyseinstrumente gibt es? -- 4 Die Marketingkonzeption -- 4.1 Welches sind Ihre Marketingziele? -- 4.2 Treffen Sie Ihre Markt- und Produktwahl -- 4.2.1 So segmentieren Sie den Markt -- 4.2.2 Diversifikation - Erweiterung um zusätzliche Produkte oder Leistungen -- 4.3 Wie Sie Ihre Marktstrategie umsetzen -- 4.3.1 Was sind Strategien? -- 4.3.2 Strategien der Marktbearbeitung -- 4.3.3 Wettbewerbsstrategien -- 4.3.4 Distributionsstrategien. , 5 Auf die richtige Mischung kommt es an: der Marketingmix -- 5.1 Marketingmix - was ist das? -- 5.2 Die Produkt- und Leistungspolitik -- 5.2.1 Produkte gestalten zum Nutzen des Kunden -- 5.2.2 Geben Sie Ihren Produkten ein prägnantes Äußeres -- 5.2.3 Wie Sie Ihr Sortiment gestalten -- 5.2.4 Produktentscheidungen sind strategische Entscheidungen -- 5.2.5 Produktpolitik und Wettbewerb -- 5.3 Die Preispolitik - Zu welchem Preis kann ich verkaufen? -- 5.3.1 Wie Sie Ihre Preise festlegen -- 5.3.2 Schritt 1: Welchen preispolitischen Spielraum haben Sie? -- 5.3.3 Schritt 2: Legen Sie Ihre preispolitischen Ziele fest -- 5.3.4 Schritt 3: Entscheiden Sie sich für Ihre preispolitische Strategie -- 5.3.5 Schritt 4: Preispolitische Maßnahmen festlegen -- 5.3.6 Schritt 5: Preiskontrollen durchführen -- 5.4 Die Kommunikationspolitik -- 5.5 Zentrale Rolle im Marketing: die Werbung -- 5.5.1 Die Informationsfunktion der Werbung -- 5.5.2 Die Motivationsfunktion der Werbung -- 5.5.3 Erscheinungsformen der Werbung -- 5.5.4 Werbeplanung und Werbedurchführung -- 5.5.5 Product-Placement - Ihr Produkt im Film -- 5.5.6 Sponsoring - Leistung und Gegenleistung -- 5.5.7 Individuelle Kontaktaufnahme: das Direktmarketing -- 5.5.8 Verkaufsförderung - den Absatz Ihrer Produkte steigern -- 5.6 In acht Schritten zum perfekten Werbeplan -- 5.6.1 Schritt 1: Analyse -- 5.6.2 Schritt 2: Ziele der Werbemaßnahme -- 5.6.3 Schritt 3: Bestimmung des Werbebudgets -- 5.6.4 Schritt 4: Hauptzielgruppen bestimmen -- 5.6.5 Schritt 5: Festlegen der Werbebotschaft -- 5.6.6 Schritt 6: Maßnahmen, Werbeträger, Werbemittel -- 5.6.7 Schritt 7: Umsetzung -- 5.6.8 Schritt 8: Werbeerfolgskontrolle -- 5.7 Die Distributionspolitik -- 5.7.1 Welchen Absatzweg wollen Sie wählen? -- 5.7.2 Sieben Schritte zum Aufbau eines Außendienstes -- 5.7.3 Das Internet - ein Vertriebskanal mit »unbegrenzten« Möglichkeiten. , 5.7.4 Die Distributionslogistik -- 6 Customer Relationship Management -- 6.1 Die wirtschaftliche Bedeutung der Kundenbindung -- 6.1.1 Loyale Kunden -- 6.1.2 Kundenabwanderung -- 6.2 Kunde ist nicht gleich Kunde -- 6.2.1 Die ABC-Analyse -- 6.2.2 Kundendeckungsbeitrag und Kundenkapitalwert -- 6.3 Kundenlebenszyklus -- 6.4 Kundenkategorien -- 6.5 Das Kundenportfolio -- 6.6 Customer Relationship Management - ein Fazit -- 7 Online-Marketing -- 7.1 Website-Gestaltung -- 7.1.1 Homepage - Startseite -- 7.1.2 Suchfunktion -- 7.1.3 Trefferliste -- 7.1.4 Produktdetailseite -- 7.1.5 Warenkorbzwischenseite -- 7.1.6 Warenkorb -- 7.1.7 Anmeldung -- 7.2 Online-Werbung -- 7.2.1 Werbeformen am Beispiel von T-Online.de -- 7.2.2 Abrechnungsmodelle und Kennzahlen -- 7.2.3 Partnerprogramme - Affiliate Marketing -- 7.3 Newsletter-Marketing -- 7.4 Usability-Testing -- 7.4.1 Expertengutachten -- 7.4.2 Usability-Test -- 7.4.3 Eyetracking -- 7.4.4 Card Sorting -- 7.5 Suchmaschinenoptimierung und -werbung -- 7.5.1 Suchmaschinenoptimierung -- 7.5.2 Suchmaschinenwerbung -- 8 Social-Media-Marketing -- 8.1 Situationsanalyse -- 8.2 Ziele -- 8.3 Zielgruppen -- 8.4 Auswahl der geeigneten Social-Media-Plattform(en) -- 8.4.1 Facebook -- 8.4.2 Instagram -- 8.4.3 Twitter -- 8.4.4 YouTube -- 8.4.5 XING und LinkedIn -- 8.4.6 Blogs -- 8.5 Content mit Mehrwert -- 8.6 Crossmediales Social-Media-Marketing -- 8.7 Erfolgskennzahlen bzw. Key Performance Indicators (KPI) -- 8.8 Social-Media-Monitoring -- 9 Mobile Marketing -- 9.1 Mobile Websites und Apps -- 9.2 App-Entwicklung -- 9.2.1 Zusammenarbeit mit einer App-Agentur -- 9.2.2 Ideenfindung und -auswahl -- 9.2.3 Ihre Nutzer -- 9.2.4 Ihre Wettbewerber -- 9.2.5 App-Konzept -- 9.2.6 Usability-Test -- 9.2.7 App im App-Store veröffentlichen -- 9.3 App-Vermarktung -- 9.3.1 On-Page-Optimierung -- 9.3.2 Online- und Social-Media-Marketing. , 9.3.3 Klassisches Marketing -- 10 Nachhaltiges Marketing -- 10.1 Problemstellung - Warum Nachhaltigkeit? -- 10.1.1 Ökologische Megatrends -- 10.1.2 Die Verantwortung der Wirtschaft -- 10.2 Die Verantwortung der Verwender -- 10.3 Der Begriff »Nachhaltigkeit« -- 10.3.1 Das 3-Säulen-Konzept -- 10.3.2 Starke und schwache Nachhaltigkeit -- 10.3.3 Intra- und intergenerative Nachhaltigkeit -- 10.3.4 Herausforderungen für Unternehmen -- 10.4 Ansätze zur Umsetzung von Nachhaltigkeit -- 10.5 Nachhaltiges Marketing -- 10.5.1 Gegenstand des nachhaltigen Marketings -- 10.5.2 Wesentliche Unterschiede zwischen Nachhaltigkeitsmarketing und konventionellem Marketing -- 10.5.3 Marketingstrategien im Nachhaltigkeitsmarketing -- 10.6 Varianten zur Erschließung des Massenmarktes -- 10.6.1 Eintritt in den Massenmarkt durch Kleinanbieter -- 10.6.2 Eintritt in den ökologischen Massenmarkt durch große konventionelle Unternehmen -- 10.6.3 Verbindung der Kostenführerschafts- und der Differenzierungsstrategie -- 10.7 Zielgruppenbestimmung im nachhaltigen Marketing -- 10.7.1 Die Bestimmung der Kundensegmente im nachhaltigen Marketing -- 10.7.2 Schlussfolgerungen für das Nachhaltigkeitsmarketing -- 10.8 Die Rolle der Konsumenten im Nachhaltigkeitsmarketing -- 10.8.1 Die Mehrpreisbereitschaft der Verbraucher -- 10.8.2 Die Rolle der Transaktions- und Opportunitätskosten -- 10.9 Das unternehmerische Nachhaltigkeitskonzept als Grundvoraussetzung für ein Nachhaltigkeitsmarketing -- 10.10 Aufgaben eines nachhaltigen Marketings -- 10.10.1 Nachhaltigkeit in der Produkt- und Leistungspolitik -- 10.10.2 Nachhaltigkeit in der Preispolitik -- 10.10.3 Nachhaltigkeit in der Kommunikationspolitik -- 10.10.4 Nachhaltigkeit in der Distribution -- 10.10.5 Vier Checklisten für ökologisches Handeln im Unternehmen -- Stichwortverzeichnis -- Die Autoren.
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham, Switzerland :Springer,
    UID:
    almatuudk_9922881091402884
    Format: 1 online resource (221 pages)
    ISBN: 9783031194719
    Note: Intro -- Preface -- Contents -- 1: The Most Basic Concepts in Biostatistics -- 1.1 Statistical Inference: From a Sample to the Population -- 1.2 Internal and External Validity -- 1.3 Null Hypothesis Significance Testing -- 1.4 The Almighty P-Value -- 1.5 Limitations of P-Values -- 1.6 More About the Meaning of the P-Value -- 1.7 Two-Sided P-Values Are the Norm in Medicine -- 1.8 Confidence Intervals -- 1.9 Type 1 and Type 2 Statistical Errors -- 1.10 We All Do Frequentist Statistics -- 1.11 Bayesian Statistics: Credible Intervals, Probability Estimates -- 1.12 Confounding -- 1.13 Interaction or Effect Modification -- 1.14 Collider Bias -- 2: Assessment of Diagnostic Tests -- 2.1 Sensitivity, Specificity, Predictive Values -- 2.2 Likelihood Ratios -- 2.3 Receiver Operating Characteristic (ROC) Curves -- 2.3.1 Effect of Threshold Changes on Predictive Values -- 2.4 F-Score -- 2.5 Common Biases in the Evaluation of Diagnostic Tests -- 2.5.1 Spectrum Bias -- 2.5.2 Post-Test Referral Bias -- 2.5.3 Biased Gold Standard -- 2.5.4 Highly Selected Populations -- 2.6 Avoiding Biases -- 2.7 Checklist for the Assessment of a Diagnostic Test -- 2.8 Screening -- 3: Use of a Diagnostic Test -- 3.1 The Two-by-Two Table in Different Scenarios -- 3.2 Pretest Probability Estimates -- 3.3 Likelihood Ratios and Fagan Nomogram -- 3.4 Use of Predictive Models -- 4: Observational Studies -- 4.1 Observational Studies. General Considerations -- 4.2 Cross-Sectional Studies -- 4.3 Odds Ratio -- 4.4 Case Control Studies -- 4.4.1 Importance of the Control Group -- 4.4.2 Ascertainment or Diagnostic Bias -- 4.4.3 Recall Bias -- 4.4.4 Interviewer Bias -- 4.4.5 Nested Case-Control Studies -- 4.5 Prospective Cohort Studies -- 4.5.1 Selection Bias -- 4.5.2 Confounding by Indication (Prescription Bias) -- 4.5.3 Immortal Time Bias. , 4.5.4 Attrition of those Susceptible -- 4.5.5 Protopathic Bias -- 4.5.6 Chronology (Secular) Bias -- 4.5.7 Non-Randomized Outcomes Studies -- 4.5.8 Checklist for Observational Studies -- 5: Commonly Used Statistics -- 5.1 Relative Risk -- 5.2 Relative Risk Reduction -- 5.3 Number Needed to Treat -- 5.4 Number Needed to Harm -- 5.5 Censoring -- 5.6 Kaplan-Meier Curves -- 5.6.1 Incorrect Kaplan-Meier Formatting -- 5.6.2 Censoring and Numbers at Risk -- 5.7 Hazard Ratio -- 5.7.1 Benefits of an Adjusted Hazard Ratio -- 5.7.2 Assessing Palliative Treatments -- 5.7.3 The Proportionality Assumption -- 5.8 The Log-Rank Statistic -- 5.8.1 Observed Vs. Expected Event Rates in Month 1 -- 5.8.2 Observed Vs. Expected Event Rates in Month 2 -- 5.8.3 Observed Vs. Expected Event Rates in Month 3 -- 5.8.4 Obtain a Global Chi-Square Test -- 5.9 Odds Ratio -- 5.10 Vaccine Efficacy -- 5.11 Attributable Proportion -- 6: Randomized Clinical Trials -- 6.1 Why Do We Need Randomized Trials? -- 6.2 Types of Clinical Trials by Phase -- 6.3 Clinical Trial Registration and Compliance with Guidelines -- 6.4 Inclusion and Exclusion Criteria -- 6.5 Internal and External Validity -- 6.6 Type 1 and Type 2 Statistical Errors -- 6.7 Sample Size and Power Estimates -- 6.8 Randomization: The R in RCT -- 6.8.1 Preventing Bias -- 6.8.2 Reducing Confounding -- 6.8.3 Stratified Randomization -- 6.8.4 Randomization by Blocks -- 6.8.5 Did Randomization Prevent Confounding? -- 6.8.6 Clustered Randomization -- 6.8.7 Fixed Unequal Allocation -- 6.8.8 Dynamic Allocation: Adaptive Randomization and Minimization -- 6.9 Blinding -- 6.9.1 Involuntary Unmasking -- 6.10 Crossovers -- 6.11 Completeness of Follow-Up -- 6.12 Intention to Treat Analysis -- 6.13 Sequential Stopping Boundaries -- 6.14 Improvements in Trial Monitoring. , 6.15 Primary and Secondary Outcomes -- 6.16 Hierarchical Testing of Secondary Outcomes -- 6.16.1 Stepwise Hierarchical Testing -- 6.17 Subgroup Analysis -- 6.18 Adaptive Clinical Trials -- 6.19 Checklist for a Randomized Clinical Trial -- 6.20 Assessing a Negative Clinical Trial -- 6.21 Checklist for a Negative Clinical Trial -- 7: Non-inferiority Clinical Trials -- 7.1 Why Do We Need Non-Inferiority Trials? -- 7.2 A Quick Reminder about Superiority Trials -- 7.3 Hypotheses in Superiority Trials -- 7.4 Type 2 Error in Superiority Trials -- 7.5 A Whole New World: Hypotheses in Non-Inferiority Trials -- 7.6 The Relative Risk (RR) Non-Inferiority Margin -- 7.7 The Absolute Risk Difference (ARD) Non-Inferiority Margin -- 7.8 Both Relative and Absolute Risk Are Clinically Important -- 7.9 Type 1 Error in Non-Inferiority Trials -- 7.10 As Treated and Intention to Treat Analysis -- 7.11 Superiority Analysis in a Non-Inferiority Trial -- 7.12 ABSORB III: A Non-Inferiority Study that Used an Absolute Risk Difference Margin -- 7.13 Is a Non-Inferiority Trial Acceptable when the Outcome Is Death? -- 7.14 Checklist for Non-Inferiority Trials -- 8: Bayesian Analysis of Clinical Trials -- 8.1 Limitations of Conventional Statistics -- 8.2 Similarities with the Diagnostic Process -- 8.3 Prior Probability, Data, and Posterior Probability -- 8.4 Types of Prior Probability -- 8.5 Prior Probabilities and Clinical Common Sense -- 8.6 The Use of Excessively Optimistic Priors Should be Avoided -- 8.7 Advantages of the Uninformative Prior -- 8.8 Navigating Statistical Lingo in the Methods Section -- 8.9 Clinical Interpretation of Posterior Probabilities -- 8.10 Irrelevance of the Null Hypothesis -- 8.11 The Added Value of Bayesian Methods -- 9: Health Economics Studies -- 9.1 Basic Definitions -- 9.2 Commonly Used Outcome Measurements. , 9.3 Controversial Issues -- 9.4 Sponsorship Bias -- 9.5 Role of Health Economics Studies in Healthcare Policy Making -- 9.6 Checklist for Health Economics Studies -- 10: Meta-Analysis -- 10.1 Systematic Reviews and Meta-Analysis -- 10.2 Publication Search -- 10.3 Publication Bias -- 10.3.1 Funnel Plot -- 10.3.2 Significance Tests -- 10.4 Selective Reporting -- 10.5 Quality of Individual Studies-Risk of Bias -- 10.6 Testing for Heterogeneity -- 10.6.1 How Much Do Individual Study Results Differ from each Other? -- 10.7 Obtaining a Pooled Estimate -- 10.7.1 Fixed Effect Model -- 10.7.2 Random Effects Model -- 10.7.3 Fixed Versus Random Effects -- 10.8 Sensitivity Analysis -- 10.9 Meta-Regression -- 10.10 Network Meta-Analysis -- 10.10.1 Qualitative Assessment of Transitivity -- 10.10.2 Quantitative Assessment of Consistency (a.K.a. Coherence) -- 10.11 Meta-Analysis Checklist -- 11: Introduction to Artificial Intelligence Methods -- 11.1 Basic Definitions -- 11.2 Performance Analysis of Machine Learning Models -- 11.3 Biases in Artificial Intelligence -- 11.4 Quality of Medical Research Using Artificial Intelligence -- 11.5 Checklist for Artificial Intelligence Methods -- 12: Finding the Best Evidence -- 12.1 The Essential Components of Clinical Practice -- 12.2 Five Step EBM Model -- 12.3 The Hierarchy of Evidence -- 12.4 The Cochrane Collaboration -- 12.5 PubMed Queries -- 12.6 Other Reliable Sources -- 12.7 Google Scholar -- 12.8 The Future of EBM -- 13: Ethics of Clinical Research -- 13.1 Relevance -- 13.2 The Belmont Report -- 13.3 Beneficence -- 13.4 Justice -- 13.5 Respect for Autonomy -- 13.6 Institutional Review Boards -- 13.7 Conflicts of Interest -- Appendix: Self-Assessment Test -- Answers to Practice Questions -- Open Access Evidence Based Clinical Knowledge. , Online EBM Resources That Require Institutional Access -- EBM Calculators, Decision Making Tools.
    Additional Edition: Print version: Palmas, Walter R. Pocket Evidence Based Medicine Cham : Springer International Publishing AG,c2023 ISBN 9783031194702
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9949945733402882
    Format: 1 online resource (xiv, 188 pages) : , illustrations
    Edition: 1st ed.
    ISBN: 3-446-43345-7
    Content: Provides in-depth coverage of tooling, processing, and secondary operations that can improve manufacturing efficiencies. Detailed and easy to understand diagrams display specific conditions and how they can be improved upon. Innovative ideas and solutions are shared and discussed.
    Note: Intro -- Acknowledgment -- Preface -- Contents -- 1 Introduction to Thermoset Elastomer Chemistry -- 1.1 Chemistry Overview -- 1.2 Polymerization -- 1.3 Thermoplastic Polymers -- 1.4 Thermoset Polymers -- 1.5 Organic and Silicone Elastomers -- 1.6 Cure Rates -- 1.7 Conclusion -- References -- 2 Compounding, Mixing and Equipment -- 2.1 Introduction -- 2.2 Compounding -- 2.3 Mixing -- 2.3.1 TSE Compound Batch Release Tests -- 2.4 Silicone -- 2.5 Conclusion -- References -- 3 Materials -- 3.1 Natural Rubber (NR) -- 3.2 Synthetic Polyisoprene (IR) [2] -- 3.3 Styrene-Butadiene (SBR) [3] -- 3.4 Polybutadiene (BR) [4] -- 3.5 Butyl (IIR) [5] -- 3.6 Ethylene-Propylene-Diene (EPDM) -- 3.7 Nitrile (NBR) [7] -- 3.8 Polyacrylic (ACM) -- 3.9 Ethylene Acrylic (AEM) -- 3.10 Silicone (MQ, VMQ, and PMQ) -- 3.11 Fluoroelastomer (FKM) [14] -- 3.12 Polyurethane (AU and EU) [15] -- 3.13 Epichlorohydrin (CO and ECO) -- 3.14 Conclusion -- References -- 4 Product Design -- 4.1 Introduction -- 4.2 Material -- 4.2.1 ASTM Classification System for Elastomeric Materials -- 4.3 Design -- 4.3.1 Tolerances -- 4.3.2 Material Shrinkage -- 4.4 Conclusion -- References -- 5 Material Testing for TSE -- 5.1 Introduction -- 5.2 Physical and Chemical Properties Tests -- 5.2.1 Tensile Testing -- 5.2.2 Compression Set -- 5.2.3 Durometer -- 5.3 Heat Aging -- 5.3.1 Accelerated Aging -- 5.4 Rubber Property - Vulcanization Using Oscillating Disk Cure -- 5.5 Fluid Resistance -- 5.6 State-of-Cure -- 5.7 Conclusion -- 6 Polymer Flow -- 6.1 Viscosity -- 6.2 Elasticity [5] -- 6.3 Plasticity [6] -- 6.4 Rheology -- 6.4.1 Thermoplastic Fluid Properties -- 6.4.2 TSE Fluid Properties -- 6.5 Shear Thinning -- 6.6 Rotational Viscometers -- 6.7 Oscillating Rheometers -- 6.8 Conclusion -- References -- 7 Molding Methods and Related Topics -- 7.1 Introduction -- 7.2 Choosing a Process -- 7.3 Book Mold. , 7.4 Bolt-In -- 7.5 Shuttling -- 7.5.1 Double Shuttle -- 7.5.2 Single Plate Shuttle -- 7.6 Rotary Molding -- 7.7 Core Bar -- 7.8 Mold Construction -- 7.8.1 Cavitation -- 7.9 Article Removal/Ejection -- 7.10 Mold Cavity Finish -- 7.11 Heaters -- 7.11.1 Heater Calculation [4] -- 7.11.2 Running -- 7.11.3 Conclusion -- 7.12 Heat Transfer -- 7.13 Insulation -- 7.14 Vacuum -- 7.15 Release Aids -- 7.15.1 Mold Lubes -- 7.15.2 Mold Plating -- 7.16 Mold Cleaning -- 7.16.1 Plastic Media Blast -- 7.16.2 Ultrasonic Cleaners -- 7.16.3 Ice Blast -- 7.17 Conclusion -- References -- 8 Compression Molding -- 8.1 Compression Presses -- 8.2 Preps -- 8.3 Operator Influence and Automation -- 8.4 Material Flow -- 8.4.1 Trapped Air -- 8.4.2 Molecular Orientation -- 8.5 Mold Construction -- 8.5.1 Disk Springs -- 8.5.2 Relative Cost -- 8.6 Pressure -- 8.7 Backrind -- 8.8 Mold Cleaning -- 8.9 Article Removal/Ejection -- 8.10 Compression Mold and Die-Cut -- 8.11 Dual Acting Spring Mechanism Compression Molding -- 8.11.1 Prep Compensating Mechanism -- 8.11.2 Secondary Trim -- 8.12 Conclusion -- References -- 9 Transfer Molding -- 9.1 Self-Contained Pot -- 9.2 Bottomless Pot Transfer -- 9.3 Transfer Press -- 9.4 Flashless Transfer Molding -- 9.4.1 Split-Top Inserts -- 9.4.2 Vents -- 9.4.3 Trapped Air -- 9.4.4 Sprues/Gates -- 9.4.5 Knit Lines -- 9.4.6 Ring Gates -- 9.4.7 Mold Construction -- 9.4.8 Transfer Pressure -- 9.5 Mold Cleaning -- 9.6 Wasteless Transfer -- 9.6.1 Equalizing Platen -- 9.7 Conclusion -- References -- 10 Injection Molding -- 10.1 Injection Unit -- 10.1.1 First In - First Out (FIFO) -- 10.1.2 Plunger Unit -- 10.1.3 Injection Controls -- 10.1.4 Injection Location -- 10.1.5 Material Feed - Stripped -- 10.1.6 Material Feed - Stuffer -- 10.2 Materials -- 10.3 Automation -- 10.4 Mold Construction -- 10.5 Molding Defects -- 10.5.1 Scorch -- 10.5.2 Cured Stock. , 10.5.3 Adhesive Wash -- 10.6 Injection Transfer -- 10.7 Injection Compression -- 10.8 Cold Runner Injection -- 10.9 Valve-Gated Cold Runner -- 10.10 Injection Pressure Considerations -- 10.10.1 Pressure Compensator -- 10.11 Conclusion -- References -- 11 Liquid Silicone Rubber -- 11.1 The System -- 11.2 The Static Mixer -- 11.3 Injection Unit -- 11.4 Molds -- 11.5 Materials -- 11.6 Special Applications -- 11.6.1 Medical -- 11.6.2 Food Contact -- 11.7 Color Or Other Additives -- 11.8 Material Change -- 11.9 Similarity to Plastic Injection Molding -- 11.10 Two-Shot Molding -- 11.11 Conclusion -- References -- 12 Secondary Operations and Additional Methods -- 12.1 Post Curing -- 12.2 Material Filtering -- 12.3 Flash -- 12.3.1 Cryogenic Deflash -- 12.4 Coatings -- 12.4.1 Parylene Coating -- 12.4.2 Plasma Treatment -- 12.4.3 Chlorination -- 12.4.4 Oils -- 12.5 Adhesion -- 12.5.1 Dipping -- 12.5.2 Tumble Baskets -- 12.5.3 Chain-On-Edge -- 12.5.4 Rotary Table -- 12.5.5 Other Application Methods -- 12.5.6 Self-Bonding Methods -- 12.5.7 Substrate Preparation -- 12.6 Conclusion -- References -- 13 TSE Molding Processing -- 13.1 Prototype -- 13.1.1 Prototype Plan -- 13.2 Production -- 13.2.1 Cure Time/Temperature -- 13.2.2 Sampling Phase -- 13.2.3 Qualification Phase -- 13.2.4 Measurement Qualification -- 13.2.5 Continuous Improvement Phase -- 13.3 Troubleshooting -- 13.4 Conclusion -- References -- 14 Manufacturing Process Planning -- Appendix 1: TSE Common Terms and Definitions -- Subject Index.
    Additional Edition: ISBN 3-446-41964-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    London, England ; : Elsevier,
    UID:
    almatuudk_9923224530802884
    Format: 1 online resource (370 pages)
    ISBN: 9780323983174 , 0323983170
    Content: "Sustainable Manufacturing Processes provides best practice advice on sustainable manufacturing methods, with examples from industry as well as important supporting theory. In the current manufacturing industry, processes and materials are developed with close reference to sustainability issues, with an outward look to optimum production efficiency and reduced environmental impact. Important topics such as the use of renewable energy, reduction of material waste and recycling, reduction in energy and water consumption, and reduction in emissions are all discussed, along with broad coverage of deformation and joining technologies, computational techniques, and computer-aided engineering. In addition, a wide range of traditional and innovative manufacturing technologies are covered, including friction stir welding, incremental forming, abrasive water jet machining, laser beam machining, sustainable foundry, porous material fabrication by powder metallurgy, laser and additive manufacturing, and thermoelectric and thermomagnetic energy harvesting."-- Page 4 of cover.
    Note: Front Cover -- SUSTAINABLE MANUFACTURING PROCESSES -- SUSTAINABLE MANUFACTURING PROCESSES -- Dedication -- Copyright -- Contents -- Contributors -- About the editors -- Foreword -- Preface -- Acknowledgment -- 1 - Introduction to sustainable manufacturing processes -- 1.1 Definition and importance -- 1.2 Manufacturing processes and sustainability implementation -- 1.2.1 Sustainable reusage of spent foundry sand -- 1.2.2 Sustainable fabrication of automotive components by metal forming route -- 1.2.3 Fusion and solid-state welding and sustainability -- 1.2.4 Sustainable machining -- 1.2.5 Sustainability of additive manufacturing -- 1.3 Sustainability assessment -- 1.4 Computer-aided analyses and sustainable manufacturing -- 1.5 Industry 4.0 and sustainable manufacturing -- 1.6 Education for sustainability development -- 1.7 Summary -- References -- 2 - Sustainability in foundry and metal casting industry -- 2.1 Introduction -- 2.2 What are foundry and metal casting processes? -- 2.3 Environmental issues in foundry and metal casting -- 2.4 Sustainability indicators for the foundry and metal casting industry -- 2.5 Concepts, technologies, management practices, and systems for sustainability assessment in the foundry and metal casting -- 2.5.1 Sustainability concepts -- 2.5.2 Sustainable technologies -- 2.5.3 Sustainable management practices -- 2.5.4 Sustainability assessment tools -- 2.6 IoT and Industry 4.0 in the foundry and metal casting -- 2.7 Summary -- 2.8 Disclosure -- References -- 3 - Sustainable manufacturing: material forming and joining -- 3.1 Need for sustainable material forming -- 3.2 Extrusion and forging -- 3.3 Rolling and wire drawing -- 3.4 Sheet stamping -- 3.5 Flexible tooling -- 3.6 Green lubrication -- 3.7 Laser-based manufacturing -- 3.8 Need for sustainable joining processes. , 3.9 Sustainable fusion and solid-state welding processes -- 3.9.1 Fusion welding -- 3.9.2 Solid-state welding -- 3.10 Mechanical joining -- 3.11 Adhesive bonding -- 3.12 Hybrid joining -- 3.13 Inclusive manufacturing -- 3.14 Summary -- References -- 4 - Sustainable manufacturing strategies in machining -- 4.1 Need for sustainable machining -- 4.2 Sustainable characteristics in machining -- 4.3 Sustainable machining techniques -- 4.3.1 Dry machining -- 4.3.2 Minimum quantity lubrication machining -- 4.3.3 Cryogenic machining -- 4.3.4 Surface texturing of tools -- 4.4 Role of sustainable machining techniques in conventional machining processes -- 4.4.1 Cryogenic cooling -- 4.4.1.1 Cryogenic turning operation -- 4.4.1.2 Cryogenic drilling operation -- 4.4.1.3 Cryogenic milling operation -- 4.4.1.4 Cryogenic grinding, boring, and broaching operations -- 4.4.2 MQL machining -- 4.4.2.1 MQL turning operation -- 4.4.2.2 MQL drilling operation -- 4.4.2.3 MQL milling operation -- 4.4.2.4 MQL grinding operation -- 4.4.3 Machining with surface textured tools -- 4.4.3.1 Texture tools in turning operation -- 4.4.3.2 Texture tools in drilling operation -- 4.4.3.3 Texture tools in milling and grinding operations -- 4.5 Sustainable nonconventional machining processes -- 4.6 Summary of recent developments, challenges, and future prospects -- References -- Further reading -- 5 - Materials development for sustainable manufacturing -- 5.1 Introduction -- 5.2 Need for development of materials -- 5.3 Classification of materials development -- 5.4 Microstructural modification of traditional materials -- 5.4.1 Severe plastic deformation -- 5.4.2 Equal channel angular extrusion -- 5.4.3 High-pressure torsion -- 5.4.4 Accumulative roll bonding -- 5.4.5 Special rolling techniques -- 5.4.6 Cryorolling -- 5.4.7 Asymmetric rolling. , 5.5 Optimization of material processing conditions -- 5.6 Material workability and microstructural control during deformation processes -- 5.7 Material processing maps -- 5.8 Role of activation energy -- 5.9 Role of stability -- 5.10 Increasing productivity of aluminum extrusion industry case study -- 5.11 Effects of prior processing history on workpiece behavior case study -- 5.12 Processing windows for different forms of Al-2024 materials case study -- 5.13 Stainless steel forging microstructure and property control case study -- 5.14 Summary -- References -- 6 - Sustainable product development process -- 6.1 Innovation and product development -- 6.2 Product innovation strategy -- 6.3 Product life cycle -- 6.4 Product development process -- 6.5 Stage gate processes -- 6.6 NPD organization -- 6.7 Decision making process -- 6.8 Program release and launch -- 6.9 Proactive feedback mechanism and lessons learnt -- 6.10 Design processes, tools, and design for sustainability -- 6.11 Sustainability in remanufacturing -- 6.12 End of life design -- 6.13 Future outlook and direction -- References -- 7 - A case study on sustainable manufacture of Ti-6Al-4V ultralightweight structurally porous metallic materials by ... -- 7.1 Introduction -- 7.1.1 Modeling of SPM by the finite element method -- 7.2 ANTARES interface -- 7.2.1 Material behavior modeling -- 7.2.2 Microstructure comparisons -- 7.2.3 Rolled specimens -- 7.3 Dynamic material model processing map -- 7.3.1 DMM processing map -- 7.4 Summary -- Further reading -- 8 - Waste energy harvesting in sustainable manufacturing -- 8.1 Introduction -- 8.1.1 Energy harvesting technologies -- 8.1.2 Waste energy harvesting in sustainable manufacturing -- 8.2 Piezoelectric technology in sustainable manufacturing -- 8.2.1 Piezoelectric effects -- 8.2.2 Piezoelectric energy harvesting. , 8.2.3 Piezoelectric technology in sustainable manufacturing -- 8.3 Thermoelectric technology in sustainable manufacturing -- 8.3.1 Thermoelectric effects -- 8.3.2 Thermoelectric energy harvesting -- 8.3.3 Thermal energy harvesting in sustainable manufacturing -- 8.4 Other energy harvesting technologies in sustainable manufacturing -- 8.4.1 Pyroelectric technology in sustainable manufacturing -- 8.4.2 Electromagnetic energy harvesting -- 8.4.3 Electrostatic energy harvesting -- 8.4.4 Thermomagnetic energy harvesting -- 8.4.5 Triboelectric energy harvesting -- 8.4.6 Sensors and IIoT in sustainable manufacturing -- 8.5 Conclusion -- References -- 9 - Sustainability performance evaluation in manufacturing: theoretical and practical perspectives -- 9.1 Literature and state of art -- 9.2 Methodology -- 9.3 Case study -- 9.3.1 Determination of the suitable linguistic scale for evaluating the performance rating and weights of the assessment model -- 9.3.2 Approximation of the expert's data of rating and weights -- 9.3.3 Evaluation of the performance rating for criteria and enabler -- 9.3.4 Determination of the overall grey performance index -- 9.3.5 Determination of GPII -- 9.3.6 Estimation of grey possibility degree and attribute ranking -- 9.4 Results -- 9.5 Summary and recommendations -- References -- 10 - Additive manufacturing including laser-based manufacturing -- 10.1 Introduction and basic principles -- 10.1.1 What is additive manufacturing? -- 10.1.2 The generic AM process -- 10.1.3 Advantages and challenges of AM -- 10.1.4 AM technologies -- 10.2 Vat photopolymerization process (SLA) -- 10.3 Powder bed fusion process (PBF) -- 10.4 Extrusion-based process (FDM or FFF) -- 10.5 Jetting-based process (material jetting (MJ) and binder jetting (BJ)) -- 10.6 Sheet lamination process (SL) -- 10.7 Directed energy deposition process (DED). , 10.8 Hybrid manufacturing -- 10.9 Post-treatment processes -- 10.9.1 Support material removal -- 10.9.2 Surface finishing -- 10.9.3 Property enhancements -- 10.9.4 Machining -- 10.10 Sustainability issues in AM -- 10.10.1 Sustainability assessment of AM components -- 10.10.2 Energy demand and environment impact of AM -- 10.10.3 Recycling/reusing of AM components -- 10.10.4 Reusing metal powder leftovers -- 10.10.5 Recycling plastic waste -- 10.11 Summary and future outlook -- References -- 11 - Computer integrated sustainable manufacturing -- 11.1 Introduction to computer integrated manufacturing -- 11.2 CAD/CAM/CAE in sustainable manufacturing -- 11.2.1 Computer-aided design -- 11.3 CAE in sustainable manufacturing -- 11.3.1 Introduction -- 11.3.2 Finite element method -- 11.3.2.1 Introduction to FEM -- 11.3.2.2 Case study -- 11.3.2.2.1 Tool and die design -- 11.3.2.2.2 Results and validation -- 11.3.2.2.3 Validations of results -- 11.3.2.2.4 Conclusions -- 11.3.3 Computational fluid dynamics -- 11.3.4 Multibody dynamics -- 11.3.5 Multiphysics and multidiscipline CAE analysis -- 11.3.6 Summary -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- Z -- Back Cover.
    Additional Edition: Print version: Narayanan, R. Ganesh Sustainable Manufacturing Processes San Diego : Elsevier Science & Technology,c2022 ISBN 9780323999908
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier Inc.,
    UID:
    almatuudk_9923225452002884
    Format: 1 online resource (702 pages)
    ISBN: 0-323-99854-2
    Content: The Handbook of Natural Polymers: Sources, Synthesis, and Characterization is a comprehensive resource covering extraction and processing methods for polymers from natural sources, with an emphasis on the latest advances. The book begins by introducing the current state-of-the-art, challenges, and opportunities in natural polymers. This is followed by detailed coverage of extraction, synthesis, and characterization methods, organized by polymer type. Along with broad chapters discussing approaches to polysaccharide-based polymers, dedicated chapters offer in-depth information on nanocellulose, chitin and chitosan, gluten, alginate, natural rubber, gelatin, pectin, lignin, keratin, gutta percha, shellac, silk, wood, casein, albumin, collagen, hemicellulose, polyhydroxyalkanoates, zein, soya protein, and gum. The final chapters explore other key themes, including filler interactions and properties in natural polymer-based composites, biocompatibility and cytotoxicity, biodegradability, life cycle, and recycling. Throughout the book, information is supported by data, and guidance is offered regarding potential scale-up and industry factors. As part of a 3-volume handbook offering comprehensive coverage of natural polymers, this book will be of interest to all those looking to gain a broad knowledge of natural polymers, including academic researchers, scientists, advanced students, engineers, and R&D professionals from a range of disciplines and industries.
    Note: Front Cover -- HANDBOOK OF NATURAL POLYMERS -- HANDBOOK OF NATURAL POLYMERS -- Copyright -- Contents -- Contributors -- Preface -- 1 - The state of the art of biopolymers-new challenges, opportunities, and future prospects -- 1.1 Introduction -- 1.2 Classifications of natural polymers -- 1.2.1 Starch -- 1.2.2 Nanocellulose -- 1.2.3 Chitin and chitosan -- 1.2.4 Alginate -- 1.2.5 Natural rubber -- 1.2.6 Gluten -- 1.2.7 Pectin -- 1.2.8 Keratin, silk, wool -- 1.2.9 Shellac -- 1.2.10 Casein -- 1.2.11 Zein -- 1.2.12 Collagen -- 1.2.13 Hemicellulose -- 1.2.14 Lignin -- 1.2.15 Soya protein -- 1.2.16 Gum -- 1.2.17 Polyhydroxyalkanoates -- 1.3 Summary and future outlook -- References -- 2 - Extraction and classification of starch from different sources: Structure, properties, and characterization -- 2.1 Introduction -- 2.2 Sources of starch and its content -- 2.2.1 Seeds and fruits -- 2.2.1.1 Cereal grains -- 2.2.1.2 Fruits -- 2.2.1.3 Fruit seeds -- 2.2.2 Roots, tubers, and rhizomes -- 2.2.3 Stems and trunks -- 2.3 Extraction and isolation of starch -- 2.3.1 Disintegration -- 2.3.2 Separation and purification -- 2.3.3 General extraction and isolation methods of starch from roots, trunks, and grains -- 2.4 Structure of starch -- 2.4.1 Morphology of starch granules -- 2.4.2 Molecular structures -- 2.4.3 Crystallinity -- 2.5 Functional properties of starch and their methods of analyses -- 2.5.1 Swelling and solubilization -- 2.5.2 Gelatinization -- 2.5.3 Retrogradation -- 2.5.4 Rheology, pasting property, and gelation -- 2.6 Conclusions -- References -- 3 - Starch as a promising replacement for synthetic polymers -- 3.1 Introduction -- 3.2 Starch modifications and thermoplastic starch -- 3.2.1 Physical modification -- 3.2.2 Chemical modification -- 3.2.3 Enzymatic modification -- 3.2.4 Dual modification -- 3.3 Thermoplastic starch. , 3.4 Applications of starch as a bioplastic and to food -- 3.5 Starch biodegradability -- 3.6 Conclusion and future outlook -- References -- 4 - Recent studies on starch-based materials: Blends, composites, and nanocomposites -- 4.1 Introduction -- 4.2 Starch -- 4.3 Starch-based blends -- 4.3.1 Blends with biodegradable polyesters -- 4.3.2 Blends with agropolymers -- 4.4 Starch-based composites and nanocomposite -- 4.4.1 Clays and nanoclays fillers -- 4.4.2 Cellulose and derivatives filler -- 4.4.3 Metallic and metal oxide fillers -- 4.5 Processing -- 4.5.1 Casting -- 4.5.2 Extrusion -- 4.5.3 Injection molding -- 4.5.4 Compression molding -- 4.6 Conclusion -- References -- 5 - Recent perception into the extraction of nanocellulose: cross talk between natural resources and progressive ap ... -- Abbreviations -- 5.1 Introduction -- 5.2 Cellulosic biomass -- 5.2.1 Biomass components -- 5.2.2 Cellulose fiber and structure -- 5.3 Nanocellulose -- 5.3.1 Types of nanocellulose -- 5.4 Preparative techniques in nanocellulose production -- 5.4.1 High-pressure homogenization -- 5.4.2 High-intensity ultrasonication -- 5.4.3 Microfluidization -- 5.4.4 Cryocrushing -- 5.5 Extraction of nanocellulose -- 5.5.1 Pretreatment of biomass -- 5.5.1.1 Solvent extraction/eutectic solvents treatment -- 5.5.1.2 Bleaching process -- 5.5.1.3 Prealkalization and alkaline treatment -- 5.5.1.4 Enzymatic pretreatment -- 5.5.1.5 Ionic liquids treatment -- 5.5.1.6 Oxidation method -- 5.5.1.7 Steam explosion method -- 5.5.1.8 Mechanical treatment -- 5.5.2 Isolation of nanocellulose -- 5.6 Characterization of nanocellulose -- 5.6.1 Fourier transform infrared spectroscopy -- 5.6.2 X-ray diffraction -- 5.6.3 Transmission electron microscopy -- 5.7 Applications of nanocellulose -- 5.7.1 Application in the biomedical field -- 5.7.1.1 Drug delivery systems. , 5.7.1.2 Role of nanocellulose in tissue engineering -- 5.7.1.3 Wound repair -- 5.7.1.4 Biosensing -- 5.7.2 Impact of nanocellulose on environmental remedy -- 5.7.3 Application in the packaging sector -- 5.7.4 Engineering and electronic applications -- 5.7.5 Biodegradability of polymers based on nanocellulose -- 5.8 Concluding remarks and future outlook -- References -- 6 - Extraction of chitin, preparation of chitosan and their structural characterization -- 6.1 Introduction -- 6.2 Structural characterization of chitin and chitosan -- 6.2.1 Determination of degree of acetylation -- 6.2.1.1 Potentiometric titration -- 6.2.1.2 Conductimetric titration -- 6.2.1.3 Spectroscopic techniques -- 6.2.1.3.1 Solid-state NMR spectroscopy -- 6.2.1.3.2 Liquid 1H NMR spectroscopy -- 6.2.1.3.3 Infrared spectroscopy -- 6.2.1.3.4 UV-visible spectroscopy [42] -- 6.2.1.3.5 X-ray diffraction -- 6.2.1.3.6 Deacetylation pattern -- 6.3 Solution properties of chitosan, determination of molar mass -- 6.4 Extraction of chitin -- 6.5 Deacetylation of chitin: preparation of chitosan -- 6.6 Role of process and structure of original chitin -- 6.7 Role of the source -- 6.8 Preparation of chitins and chitosans with controlled physicochemical properties -- 6.9 Conclusion -- References -- 7 - Chitin and chitosan-based polymer blends, interpenetrating polymer networks, and gels -- 7.1 Introduction -- 7.2 Modification of chitosan -- 7.2.1 Chemical modification of chitosan through chitosan derivatives -- 7.2.1.1 Carboxylation -- 7.2.1.2 Etherification -- 7.2.1.3 Esterification -- 7.2.2 Physical modification of chitosan through blending with other biopolymers -- 7.2.2.1 Chitosan blending with natural polymers -- 7.2.2.1.1 Chitosan-polysaccharide blended materials -- 7.2.2.1.2 Chitosan-protein blended materials -- 7.2.2.2 Chitosan blending with synthetic polymers. , 7.3 Applications of chitosan-based polymer blends -- 7.4 Conclusions and future perspectives -- References -- 8 - Antibacterial efficacy of natural compounds chitin and chitosan: a mechanistic disclosure -- 8.1 Introduction -- 8.2 Historical perspective -- 8.3 Chitin -- 8.3.1 Chitin sources -- 8.3.2 Chemical structure of chitin -- 8.4 Chitosan -- 8.4.1 Sources of chitosan -- 8.4.2 Chitosan structure -- 8.4.3 Chitin's and chitosan's biological characteristics -- 8.5 Antibacterial effect of chitin -- 8.6 Mechanism of action of chitosan against pathogenic microbes -- 8.6.1 Cell wall disruption -- 8.6.2 Chitosan-microbial DNA interactions -- 8.6.3 Chitosan chelation of nutrients -- 8.6.4 Bacteriostatic efficacy of chitosan -- 8.6.4.1 Efficacy of chitosan with Gram-positive bacteria -- 8.6.4.2 Interaction of chitosan with Gram-negative bacteria -- 8.6.4.3 Chitosan's role in wound healing -- 8.7 Factors affecting the antibacterial activity of chitosan -- 8.7.1 Chitosan molecular weight -- 8.7.2 The pH effects -- 8.7.3 Chitosan concentration -- 8.7.4 Chitosan-derived compounds -- 8.7.5 Cell growth phase -- 8.7.6 Temperature -- 8.7.7 Hydrophilic and hydrophobic properties -- 8.7.8 Microorganisms -- 8.7.8.1 Classification of bacteria -- 8.8 Applications of chitosan -- 8.8.1 Food processing applications -- 8.8.1.1 Preservation of food packaging -- 8.8.1.2 Role of chitosan in food additives -- 8.8.2 Medicine and health -- 8.8.2.1 Drug transporters -- 8.8.2.2 Wound dressings -- 8.8.2.3 Tissue engineering -- 8.9 Conclusions and future perspectives -- References -- 9 - Anisotropic nanoscale green materials: prior and current status of nanocellulose and nanochitin systems -- 9.1 Introduction -- 9.2 Cellulose and nanocellulose -- 9.2.1 Cellulose origin and chemistry -- 9.2.2 Nanocellulose classifications -- 9.3 Chitin and nanochitin. , 9.3.1 Chitin origin and chemistry -- 9.3.2 Chitin allomorphs -- 9.4 Utility of biobased nanomaterials -- 9.4.1 Nanocellulose in aqueous suspension -- 9.4.1.1 Flow behavior of fibrous nanocellulose -- 9.4.1.2 Flow behavior of crystalline nanocellulose -- 9.4.1.3 Lyotropic behavior of crystalline nanocellulose -- 9.4.1.4 Solid-state behavior of nanocellulose -- 9.4.1.4.1 Fibrous nanocellulose films and nanocomposites -- 9.4.1.4.2 Crystalline nanocellulose films and nanocomposites -- 9.4.2 Nanochitin in aqueous suspension -- 9.4.2.1 Phase and flow behavior of nanochitin suspensions -- 9.4.2.2 Rheological behavior of nanochitin in polymer dispersions -- 9.4.2.3 Solid-state behavior of nanochitin -- 9.4.2.3.1 Nanochitin-based materials and properties -- 9.4.2.3.2 Nanochitin-based polymer nanocomposites -- 9.5 Conclusions and future prospects -- References -- 10 - Grafted natural polymers: synthesis and structure-property relationships -- 10.1 Introduction -- 10.2 Natural polymers/polysaccharides -- 10.3 Structure-property relationship of grafted natural polymer -- 10.3.1 Xanthan gum -- 10.3.2 Alginate -- 10.3.3 Cellulose -- 10.3.4 Starch -- 10.3.5 Dextran -- 10.3.6 Carrageenans -- 10.3.7 Chitin and chitosan -- 10.4 Goals of grafting of natural polymer -- 10.4.1 Solubility -- 10.4.2 Hydrophobicity -- 10.4.3 Charge density modification -- 10.5 Concept of grafting -- 10.6 Types of grafting -- 10.7 Techniques of synthesis of grafted natural polymers -- 10.7.1 Methods of radiation-induced grafting -- 10.8 Controlling factors of grafting -- 10.8.1 Type of polymer -- 10.8.2 Effect of initiator -- 10.8.3 Effect of monomer -- 10.8.4 Type of radiation (dose, dose rate) -- 10.8.5 Effects of solvent -- 10.8.6 Effect of temperature -- 10.9 Reported grafted natural polysaccharides -- 10.10 Characterization of the grafted natural polymeric materials. , 10.10.1 Fourier transform infrared spectroscopy.
    Additional Edition: Print version: Sreekala, M. S. Handbook of Natural Polymers, Volume 1 San Diego : Elsevier,c2023 ISBN 9780323998536
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    almatuudk_9923224824802884
    Format: 1 online resource (400 pages)
    Edition: 1st ed.
    ISBN: 9780443139499 , 0443139490
    Series Statement: Micro and Nano Technologies Series
    Content: This book explores the integration of advanced nanomaterials into renewable and clean energy systems, highlighting their preparation, application, and effectiveness. Edited by Sahar Zinatloo-Ajabshir and Ardashir Mohammadzadeh, the book delves into the use of nanomaterials in various technologies such as perovskite-based solar cells, dye-sensitized solar cells, hydrogen storage, and Li-ion batteries. It addresses the basics of photovoltaic panels, solar energy applications, and financial aspects of solar energy projects. The authors provide insights into the role of micro and nano technologies in enhancing the efficiency and sustainability of energy systems. The book is targeted at researchers, practitioners, and students interested in the latest advancements in nanotechnology and renewable energy.
    Note: Front Cover -- Renewable and Clean Energy Systems Based on Advanced Nanomaterials -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Renewable and clean energy systems based on advanced nanomaterials, basics, and developments -- References -- 2 Advanced nanomaterials for perovskite based solar cells -- 2.1 General introduction -- 2.2 Metal oxide nanoparticles -- 2.2.1 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.1.1 TiO2 -- 2.2.1.2 SnO2 -- 2.2.1.3 ZnO -- 2.2.1.4 Other MOs -- 2.2.1.5 Double layer ETLs -- 2.2.2 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.2.1 NiOX -- 2.2.2.2 MoOx -- 2.2.2.3 Other MOs -- 2.3 Carbon nanomaterials -- 2.4 Quantum dots -- 2.5 Other advanced nanomaterials -- 2.6 Conclusion and outlook -- Nomenclature -- References -- 3 Advanced nanomaterials for dye sensitized solar cells -- 3.1 General introduction -- 3.2 Structure of dye-sensitized solar cell -- 3.3 Nanomaterials usage in dye-sensitized solar cells -- 3.3.1 Photoanodes -- 3.3.1.1 One-dimensional nanomaterials -- 3.3.1.2 Two-dimensional nanostructures -- 3.3.1.3 Three-dimensional hierarchical nanostructures -- 3.3.1.4 Nanocomposites -- 3.3.2 Counter electrode -- 3.3.2.1 Platinum -- 3.3.2.2 Platinum alloys -- 3.3.2.3 Carbon -- 3.3.2.3.1 Carbon black -- 3.3.2.3.2 Carbon nanotubes -- 3.3.2.3.3 Graphene sheets -- 3.3.2.4 Transition metal compounds -- 3.4 Conclusion and outlook -- References -- 4 Mixed metal oxide-based nanomaterials for hydrogen storage -- 4.1 General introduction -- 4.2 Electrochemical hydrogen storage -- 4.3 Hydrogen storage mechanism -- 4.3.1 Physisorption and chemisorption -- 4.3.2 Redox process -- 4.3.3 Spillover effect -- 4.3.4 Other mechanism -- 4.4 Materials -- 4.4.1 Pristine mixed metal oxides -- 4.4.2 Composites -- 4.4.2.1 Carbonous-based nanocomposites. , 4.4.2.2 Polymer-based nanocomposites (polymer support) -- 4.4.2.3 Two-dimensional-based nanocomposites (layered support) -- 4.4.2.4 Metal-organic frameworks -- 4.5 Conclusion and outlook -- References -- 5 Graphitic carbon nitride/graphene-based nanomaterials for hydrogen storage -- 5.1 General introduction -- 5.2 Graphene-based material -- 5.2.1 Graphene-based nanomaterials for hydrogen storage -- 5.3 Graphitic carbon nitride -- 5.3.1 Graphitic carbon nitride for hydrogen storage -- 5.4 Graphene/graphitic carbon nitride for hydrogen storage -- 5.5 Conclusion and outlook -- References -- 6 Active nanomaterials for Li-ion batteries and advanced nanomaterials for supercapacitors -- 6.1 General introduction -- 6.2 Active materials: nanostructuring versus microstructuring -- 6.3 Morphology controlling -- 6.3.1 Zero-dimensional structures -- 6.3.2 One-dimensional structures -- 6.3.3 Two-dimensional structures -- 6.3.4 Three-dimensional structures -- 6.4 Advanced electrode materials -- 6.4.1 Metal-organic frameworks (MOFs) -- 6.4.2 MXenes -- 6.4.3 Layered double hydroxides -- 6.5 Conclusion and outlook -- References -- 7 Basics of photovoltaic panels and an overview of the use of solar energy in the world -- 7.1 Introduction -- 7.2 Brief history of using the sun as an energy source -- 7.2.1 Billion years ago, solar energy began to radiate to the Earth -- 7.3 Introducing photovoltaic systems -- 7.3.1 Current solar energy businesses -- 7.3.2 Electricity production costs with photovoltaic technology -- 7.3.3 The advantages and disadvantages of solar energy -- 7.3.4 Comparing energy generation technologies -- 7.3.5 Top ten companies producing photovoltaic panels -- 7.4 The basics of photovoltaic panels -- 7.4.1 Introduction -- 7.4.2 Photovoltaic technologies -- 7.4.3 Monocrystalline cells -- 7.4.4 Polycrystalline cells -- 7.4.5 Thin-film cells. , 7.4.6 The components of a solar power plant -- 7.4.7 Converters -- 7.4.8 Solar photovoltaic modules -- 7.4.9 Mounting rack (framework or foundation) -- 7.4.10 Grid connection -- 7.4.11 Solar cell efficiency -- 7.4.11.1 Converter efficiency -- 7.4.12 Standards -- 7.4.13 The performance factor of photovoltaic power plants -- References -- 8 The efficiency of solar panels and power control -- 8.1 Introduction -- 8.2 Solar panel modeling -- 8.2.1 Obtaining the parameter of simple exponential models -- 8.3 Battery modeling -- 8.4 Converter modeling -- 8.5 Optimal operating point tracking algorithms -- 8.5.1 The perturbation and observation algorithm -- 8.5.2 Base voltage algorithms -- 8.5.3 Bird count algorithm -- 8.5.4 Fuzzy methods -- 8.5.5 Type-2 fuzzy systems for modeling uncertainties -- 8.6 Control design -- 8.6.1 Problem 1 -- 8.6.2 Simulation -- 8.6.3 Conclusion -- 8.7 Examples of solar energy deployment -- 8.7.1 Large solar farms -- 8.7.2 The Bhadla Solar Park in India -- 8.7.3 Pavagada solar park -- 8.7.4 Tengger desert project in the Ningxia Province of China -- 8.7.5 Longyangxia Dam Solar Park -- 8.7.6 Longyangxia Dam Solar Park -- 8.7.7 Longyangxia Dam Solar Park -- 8.7.8 Villanueva Solar -- 8.7.9 Kamuthi Solar Power Plant -- 8.7.10 Solar Star solar farm -- 8.7.11 Golmud solar park of China -- 8.7.12 Topaz solar power plant of California -- 8.7.13 Agua Caliente power plant of Arizona -- 8.7.14 Meuro power plant -- 8.7.15 Iran's photovoltaic power plants -- 8.7.16 The Ghadir solar power plant of Isfahan -- 8.7.17 Example of trough parabolic power plants -- 8.7.18 Examples of solar power towers -- 8.7.19 Small- and medium-sized solar power plants -- 8.7.20 Domestic power plants -- 8.7.21 Iran's photovoltaic power plants -- 8.7.21.1 Shiraz solar power plant -- 8.7.21.2 Tabriz solar power plant -- 8.7.21.3 Mashhad solar power plant. , 8.7.21.4 Taleghan solar power plant -- 8.8 Household power plants -- 8.8.1 Household use of solar power plants in Kashan -- 8.8.2 Reduction in greenhouse gas emissions achieved by the photovoltaic power plant in Haljerd -- 8.8.2.1 Kyoto protocol -- 8.8.2.2 Principles -- 8.8.2.3 Details -- 8.8.2.4 Financial commitments -- 8.8.2.5 Purchasing and selling greenhouse publications -- 8.8.2.6 Greenhouse gas emissions of various power plants in their lifetime -- 8.8.3 Equalization of nonemission of carbon dioxide -- 8.8.4 Equalization with the area of forestation -- 8.8.5 Equalization of carbon dioxide reduction by a 100kW photovoltaic power plant -- 8.8.6 Equalization of a 100kW photovoltaic power plant with unburned gasoline -- 8.8.7 Equalization of the 100kW photovoltaic power plant with forestation -- References -- 9 The physics of sunlight and cells -- 9.1 Introduction -- 9.2 The sun -- 9.2.1 Properties of sunlight -- 9.2.2 The functional principles of solar cells -- 9.2.2.1 Production of charge carriers based on the absorption of photons in bond-forming materials -- 9.2.2.2 Sequential analysis of the charge carriers of the photovoltaic generator in a bond -- 9.2.2.3 Collecting the photovoltaic charge carriers in terminals -- 9.2.2.4 Loss mechanisms -- 9.2.3 The basic physics of semiconductors -- 9.2.4 Materials -- 9.2.5 Atomic structure -- 9.2.6 Doping -- 9.2.7 Doped semiconductors -- 9.2.8 The history of the photovoltaic effect -- 9.2.9 The photovoltaic effect -- 9.2.10 Recombination -- 9.2.11 Auger electron spectroscopy -- 9.2.11.1 The Auger effect and electron emission -- 9.2.11.2 Examples of applications -- 9.2.11.3 Samples -- 9.2.12 Optical absorption processes -- References -- 10 The different methods of using solar energy -- 10.1 Introduction -- 10.2 Dye-sensitized solar cells. , 10.2.1 The structure and working principle of dye-sensitized solar cells -- 10.2.2 Types of dye sensitizers -- 10.3 Organic solar cells -- 10.3.1 The working principle of organic solar cells -- 10.3.2 Advantages -- 10.3.3 Disadvantages -- 10.3.4 Concentrator photovoltaics technology -- 10.3.5 Specifications of concentrator modules -- 10.3.6 New and emerging concepts of solar cells -- 10.3.7 Solar thermal energy -- 10.3.8 Solar water heaters -- 10.3.9 Solar air conditioning -- 10.3.9.1 Solar absorption air conditioning -- 10.3.9.2 Photovoltaic air conditioning system -- 10.3.10 Absorption chillers -- 10.3.11 Desync cooling systems -- 10.3.12 Solar ovens and furnaces -- 10.3.13 Floating photovoltaic systems -- 10.4 Technical discussions -- 10.5 Feasibility in Middle East -- 10.6 The components of floating photovoltaic power plants -- 10.7 Evaluating the photovoltaic power plant installed at sea -- 10.8 Using the photovoltaic system for water treatment -- 10.9 Treatment system mechanisms -- 10.10 Different water treatment technologies -- 10.10.1 Distillation -- 10.10.2 Electrodialysis -- 10.10.3 Reverse osmosis -- 10.10.4 Advantages -- 10.10.5 Disadvantages -- 10.10.6 Challenges of water treatment using the photovoltaic system -- 10.10.7 Economic advantages -- References -- 11 Financial analysis of solar energy -- 11.1 Introduction -- 11.2 Reducing costs in manufacturing system components -- 11.2.1 Standardized design of photovoltaic systems -- 11.2.2 System volume -- 11.2.3 Solar cell efficiency -- 11.3 Reducing cost in sales and distribution of system component -- 11.4 Reducing installation and repair costs -- 11.5 Improving the efficiency of financial systems and programs -- 11.6 Improving equipment performance and correcting amplifier characteristics -- 11.6.1 Microgrids and their operating modes. , 11.6.2 Overview of control technology for multiple inverters in off-grid mode.
    Additional Edition: ISBN 9780443139505
    Additional Edition: ISBN 0443139504
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almatuudk_9923225006602884
    Format: 1 online resource (458 pages)
    ISBN: 9780323919265 , 032391926X
    Series Statement: Advances in Pollution Research
    Note: Front Cover -- Microbial Consortium and Biotransformation for Pollution Decontamination -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Foreword -- Preface -- Acknowledgments -- About the book -- 1 Threats and consequences of untreated wastewater on freshwater environments -- 1.1 Introduction -- 1.2 What is sewage? -- 1.3 Contaminant sources of emerging concerns -- 1.3.1 Wastewater -- 1.3.2 Sewage sludge -- 1.3.3 Urban solid waste -- 1.4 Fate of contaminants -- 1.5 Ecological risk and health assessment of emerging contaminant in untreated water -- 1.6 Untreated wastewater as a cause of antibiotic resistance -- 1.7 Impact of wastewater on cities -- 1.8 Impact of wastewater on industry -- 1.9 Impact of wastewater on agriculture -- 1.10 Impact of wastewater on natural bodies of water -- 1.11 Impact of untreated wastewater on microbial diversity -- 1.12 Impact of wastewater in aquatic environments -- 1.13 Biologic hazards in aquatic environments -- 1.14 Major threats -- 1.15 Why should wastewater be treated? -- 1.16 Challenges and opportunities -- 1.17 Conclusion -- References -- 2 Unraveling a correlation between environmental contaminants and human health -- 2.1 Introduction -- 2.2 Environmental toxicology and related human health risks -- 2.2.1 Air pollution -- 2.2.2 Hazard effect on health -- 2.2.3 Nonpoint source pollution -- 2.2.4 Chemical pollution from the environment -- 2.3 The environmental impact of chemical fertilizers and excessive fertilizers on water quality -- 2.3.1 Oxygen consumption -- 2.3.2 Weed growth and algae bloom -- 2.4 Method to reveal the relationship between human body, environment, and emotion data -- 2.5 Conclusion -- References -- 3 Effect of wastewater from industries on freshwater ecosystem: threats and remedies -- 3.1 Introduction. , 3.2 Saline wastewater: its impact and treatment -- 3.2.1 Effect of salinity on freshwater ecosystem -- 3.3 Food-processing industry wastewater -- 3.4 Leather industry wastewater -- 3.5 Effluents from petroleum industry -- 3.6 Plastic industries and micro- and nanoplastic in freshwater ecosystem -- 3.6.1 Effect of microplastic on freshwater ecosystem -- 3.7 Effect of different wastewater from industries on freshwater organisms -- 3.8 Remedies to reduce industrial effluents -- 3.9 Conclusion -- References -- 4 Credibility on biosensors for monitoring contamination in aquatic environs -- 4.1 Introduction -- 4.2 Major sources of water pollution -- 4.3 Biosensors -- 4.3.1 Biosensors for the detection of heavy metals -- 4.3.1.1 Enzyme-based biosensors -- 4.3.1.2 Protein-based biosensor -- 4.3.1.3 Antibody-based biosensor -- 4.3.1.4 Deoxyribonucleic acid-based biosensor -- 4.3.1.5 Naturally occurring whole-cell biosensor -- 4.3.1.6 Genetic engineering-based biosensor -- 4.3.2 Biosensors for the detection of microorganisms -- 4.3.2.1 Optical biosensors -- 4.3.2.2 Electrochemical biosensor -- 4.3.3 Biosensors for the detection of organic pollutants -- 4.3.3.1 Organic pollutants -- 4.3.3.2 Optical biosensors -- 4.3.3.3 Electrochemical biosensors -- 4.3.3.4 Thermal biosensors -- 4.4 General limitations, challenges, and future prospects of biosensors in wastewater monitoring -- 4.5 Conclusion -- References -- 5 Microbial systems, current trends, and future prospective: a systemic analysis -- 5.1 Introduction -- 5.2 Microbiology for soil health, environmental protection, and sustainable agriculture -- 5.3 Future prospects of environmental microorganisms -- 5.4 Microbial pesticides -- 5.5 Microorganisms' impending visions -- 5.6 Interconnections between plants and soil microorganisms -- 5.7 Plant acquisition of nutrients: direct uptake from the soil. , 5.7.1 Mycorrhizal interactions with plants -- 5.8 Conclusion and remark -- References -- 6 Microbial consortia for pollution remediation-Success stories -- 6.1 Introduction -- 6.2 Bioremediation -- 6.3 Microbial consortia-a multispecialized biological system for bioremediation -- 6.4 Microbial consortia and degradation of pollutants -- 6.4.1 Degradation of petroleum components -- 6.4.2 Remediation of wastewater -- 6.4.3 Degradation of industrial dyes -- 6.4.4 Remediation of other organic pollutants -- 6.5 Conclusion and future perspective -- Acknowledgment -- References -- 7 Biological transformation as a technique in pollution decontamination -- 7.1 Introduction -- 7.2 Biological transformation -- 7.3 Biological transformation classes -- 7.3.1 Biotransformation -- 7.3.1.1 Biotransformation of pharmaceutical compounds -- 7.3.1.2 Biotransformation of metals and metalloids -- 7.3.1.3 Biotransformation of phenol compounds -- 7.3.1.4 Biotransformation of pesticides -- 7.3.1.5 Biotransformation of real effluents -- 7.3.2 Phytotransformation -- 7.3.2.1 Phytotransformation of fluorinated compounds -- 7.3.3 Mycotransformation -- 7.3.3.1 Mycotransformation of pesticides -- 7.3.3.2 Mycotransformation of metals -- 7.3.3.3 Mycotransformation of pharmaceutical compounds -- 7.3.3.4 Mycotransformation of phenol compounds -- 7.3.3.5 Mycotransformation of dyes -- 7.3.4 Phycotransformation -- 7.3.4.1 Phycotransformation of metals and metalloids -- 7.3.4.2 Phycotransformation of pharmaceutical compounds -- 7.3.5 Zootransformation -- 7.3.5.1 Zootransformation of fluorinated compounds -- 7.3.5.2 Zootransformation of metals and metalloids -- 7.4 Factors influencing biological transformation -- 7.5 Functional genes implicated in biological transformation -- 7.6 Enzymes involved in biological transformation -- 7.7 Nanomaterial biological transformation. , 7.8 Cometabolic biological transformation -- 7.8.1 Cometabolic biotransformation -- 7.8.2 Cometabolic phycotransformation -- 7.9 Conclusions and future perspectives -- References -- 8 Role of polyphosphate accumulating organisms in enhanced biological phosphorous removal -- 8.1 Introduction -- 8.2 Natural occurrence of polyphosphate accumulating organisms -- 8.3 Microbiology of EBPR and polyphosphate accumulating organisms -- 8.4 Biochemistry of EBPR and phosphate accumulating organism -- 8.5 EBPR with acetate as a carbon source -- 8.6 EBPR metabolism with substrates other than acetate -- 8.7 Enzymes involved in poly P metabolism -- 8.7.1 Poly P synthesis -- 8.7.2 Poly P degradation -- 8.8 EBPR configurations -- 8.8.1 Mainstream process -- 8.8.1.1 A/O or A2/O -- 8.8.1.2 University of Cape Town-modified process -- 8.8.1.3 Johannesburg configuration -- 8.8.2 Sidestream -- 8.8.2.1 PhoStrip -- 8.8.2.2 Biological-chemical phosphorous and nitrogen removal configuration -- 8.8.3 Cycling system -- 8.8.3.1 Biodenipho process -- 8.8.3.2 Oxidation ditch design -- 8.9 Parameters to consider in EBPR process -- 8.9.1 Temperature -- 8.9.1.1 Recent research on EBPR process in tropical conditions -- 8.9.2 Carbon source and wastewater composition -- 8.9.3 pH -- 8.9.4 Sludge age -- 8.9.5 Recycle of nitrates -- 8.9.6 Sludge phosphorous content -- 8.10 Criteria to monitor effective EBPR process -- 8.11 Transfer of energy pathway genes in microbial enhanced biological phosphorous removal communities -- 8.12 Novel and potential EBPR system -- 8.13 Conclusion and future perspective -- References -- 9 Genetically engineered bacteria: a novel technique for environmental decontamination -- 9.1 Introduction -- 9.2 Environmental contaminants -- 9.2.1 Heavy metal contamination -- 9.2.2 Dye-based hazardous pollutants -- 9.2.3 Radioactive compounds. , 9.2.4 Agricultural chemicals: herbicides, pesticides, and fertilizers -- 9.2.5 Petroleum and polycyclic aromatic hydrocarbon contaminants -- 9.2.6 Polychlorinated biphenyls -- 9.3 Genetically engineered bacteria and their construction -- 9.4 Genetically engineered bacteria for a sustainable environment -- 9.4.1 Remediation of toxic heavy metals -- 9.4.2 Bioremediation of dye by engineered bacteria -- 9.4.3 Bioremediation of radionuclides -- 9.4.4 Bioremediation of agricultural chemicals: herbicides, pesticides, and fertilizers -- 9.4.5 Petroleum and polycyclic aromatic hydrocarbons contaminants -- 9.4.6 Bioremediation of polychlorinated biphenyls -- 9.5 Factors affecting bioremediation from genetically engineered bacteria -- 9.6 Limitations and challenges of in-field release of genetically engineered bacteria -- 9.7 Survivability and sustenance of genetically engineered bacteria -- 9.8 Conclusion -- Acknowledgments -- Abbreviations -- References -- 10 An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida -- 10.1 Introduction -- 10.2 White-rot fungi -- 10.2.1 Oyster mushroom or Pleurotus florida -- 10.3 Textile dyes -- 10.3.1 Description of dyes -- 10.4 Scenario of textile dyes utilized in India -- 10.5 Explication of dyeing process in textile industries -- 10.6 Hallmarks of wastes effected by the textile industry -- 10.7 Impact of textile dyes on environment -- 10.8 Dye decolorization methods -- 10.8.1 Physical method -- 10.8.2 Chemical method -- 10.8.3 Biological method -- 10.9 Oxidative and hydrolytic enzymes of Pleurotus florida used in decolorization of azo dyes -- 10.9.1 Laccase (E.C 1.10. 3.2) -- 10.9.2 Manganese peroxidase (E.C. 1.11.1.13) -- 10.9.3 Lignin peroxidase -- 10.10 Factors influencing the dye decolorization -- 10.10.1 Influence of pH and temperature -- 10.10.2 Impact of nitrogen source. , 10.10.3 Influence of carbon source.
    Additional Edition: Print version: Dar, Gowhar Hamid Microbial Consortium and Biotransformation for Pollution Decontamination San Diego : Elsevier,c2022 ISBN 9780323918930
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Waltham, MA :Elsevier,
    UID:
    almatuudk_9923226005302884
    Format: 1 online resource (1146 p.)
    Edition: First edition.
    ISBN: 9780128041468 , 0128041463 , 9780128041338 , 0128041331
    Note: Description based upon print version of record. , Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Acknowledgments -- Chapter 1 - Gas properties -- 1.1 - Equation of state -- 1.2 - Gas viscosity -- 1.3 - Solubility of natural gas in water -- 1.4 - Solubility of water vapor in natural gas -- 1.5 - Hydrates -- 1.6 - Specific heat ratio -- References -- Chapter 2 - Single-phase flow -- 2.1 - Single-phase gas flow -- 2.1.1 - Static gas gradients in vertical pipes and annuli -- 2.1.2 - Gas pressure gradients in vertical pipes considering frictional pressure drop -- 2.1.3 - Gas flow in horizontal pipes -- 2.2 - Single-phase liquid flow -- 2.2.1 - Static pressure gradient -- 2.2.2 - Dynamic gradient -- References -- Chapter 3 - Multiphase flow -- 3.1 - Qualitative aspects -- 3.2 - General quantitative aspects in multiphase flow -- 3.2.1 - General definitions -- 3.2.2 - Equations for multiphase flow pressure and temperature gradients -- 3.3 - Examples of correlations and mechanistic models developed for vertical upward multiphase flow -- 3.4 - Horizontal multiphase flow -- 3.5 - Unified models -- 3.5.1 - Horizontal flow -- 3.5.2 - Vertical flow -- 3.5.3 - Unified models -- 3.6 - Fluid flow through annular cross-sections -- 3.6.1 - Flow pattern prediction -- 3.6.2 - Models developed for liquid holdup and pressure drop calculations -- References -- Chapter 4 - Single and multiphase flow through restrictions -- 4.1 - Gas flow through restrictions -- 4.2 - Liquid flow through restrictions -- 4.3 - Multiphase flow through restrictions -- References -- Chapter 5 - Total system analysis applied to gas lift design -- 5.1 - Determination of the depth of the operating point of injection -- 5.1.1 - Determination of the injection point depth assuming constant wellhead production pressure -- 5.1.2 - Finding the injection point depth with variable wellhead pressure. , 5.1.3 - Use of computer programs to find the point of injection and perform additional useful operations -- 5.2 - Examples of the effect that different gas lift system's components or fluid properties might have on the liquid produ... -- 5.3 - Calculation examples -- 5.3.1 - Example of preliminary calculations needed to implement the gas lift method to boost the liquid production of a wel... -- 5.3.2 - Example of preliminary calculations to design a gas lift well that cannot produce on natural flow -- Chapter 6 - Gas lift equipment -- 6.1 - Gas lift valves and latches -- 6.2 - Gas lift mandrels -- 6.3 - Wireline equipment -- 6.4 - Types of completions for gas lift installations -- 6.4.1 - Single completions -- 6.4.2 - Gas lift as a backup method for electric submersible pumps -- 6.4.3 - Accumulation chambers -- 6.4.4 - Dual wells -- 6.4.5 - Use of coiled tubing -- 6.4.6 - Intermittent gas lift with metallic plungers -- Chapter 7 - Gas lift valve mechanics -- 7.1 - Force-balance equations for the different types of gas lift valves -- 7.1.1 - Injection-pressure-operated valves -- 7.1.2 - Production-pressure-operated valves -- 7.2 - Calculation of the nitrogen pressure at different conditions -- 7.3 - Determination of the port and bellows areas -- 7.4 - Examples of Problems Using the Force-Balance Equations for Designing and Troubleshooting Gas Lift Installations -- Reference -- Chapter 8 - Gas flow through gas lift valves -- 8.1 - Use of the Thornhill-Craver equation for gas lift valves -- 8.2 - Mathematical models for the dynamic behavior of gas lift valves -- 8.2.1 - Simple mechanistic model for single element, IPO, gas lift valves (without dynamic effect) -- 8.2.2 - Mechanistic model for single element, IPO, gas lift valves (with dynamic effect) -- 8.2.3 - Dynamic model for pilot valves -- 8.3 - Use of chokes installed downstream of the seat. , 8.4 - Use of chokes installed upstream of the seat -- 8.5 - Orifice valves with special geometry seats -- References -- Chapter 9 - Design of continuous gas lift installations -- 9.1 - Determination of the operating injection point depth, target injection gas flow rate, and the liquid flow rate the we... -- 9.1.1 - Iterative procedure -- 9.1.2 - Fixed drawdown or fixed liquid production -- 9.1.3 - Constant liquid production -- 9.2 - Gas lift mandrel spacing procedures and valve design calculations -- 9.2.1 - Mandrel spacing for IPO valves -- 9.2.2 - Mandrel spacing for PPO valves -- 9.2.3 - Unloading liquid flow rate and required injection gas flow rate at each unloading valve -- 9.2.4 - Injection gas temperature at depth and valve operating temperature calculation -- 9.2.5 - Determination of the seat diameters of the operating and unloading valves -- 9.2.6 - Dual wells (with a common injection gas source) -- 9.2.7 - Redesign -- 9.2.8 - Mandrel spacing from the reservoir static liquid level -- 9.3 - Stability check of the gas lift design -- 9.4 - Examples of gas lift designs -- References -- Chapter 10 - Design of intermittent gas lift installations -- 10.1 - Description of the production cycle -- 10.2 - General fundamentals and implementation guidance for intermittent gas lift -- 10.3 - Types of completions for intermittent gas lift -- 10.4 - Description of pilot valves -- 10.5 - Types of control of the surface gas injection -- 10.6 - Intermittent gas lift design for simple type completions -- 10.6.1 - Design of the operating valve for choke-control intermittent gas lift -- 10.6.1.1 - Optimum cycle time calculation -- 10.6.1.2 - Calculation of the volume of gas per cycle vgsR and vgsC -- 10.6.1.3 - Calculation of the valve's closing pressure, Pcvc -- 10.6.1.4 - Summary of required calculations for choke-control intermittent gas lift design. , 10.6.2 - Design procedure with the use of surface controllers (intermitters) -- 10.6.3 - Mechanistic models for the design of simple type completions on choke-control intermittent gas lift -- 10.6.3.1 - Stages of the production cycle -- 10.6.3.2 - Equations that model each stage -- 10.7 - Design of accumulation chambers -- 10.8 - Simple type accumulator -- 10.9 - Inserted chambers and inserted accumulators -- 10.10 - Intermittent gas lift in dual wells -- 10.10.1 - One zone on continuous gas lift and the other on intermittent gas lift -- 10.10.2 - Both zones on intermittent gas lift -- 10.10.2.1 - One zone with Injection-Pressure-Operated valves and the other with Production-Pressure-Operated Valves -- 10.10.2.2 - Both zones on intermittent gas lift with Injection-Pressure-Operated valves -- 10.10.2.3 - Both zones on intermittent gas lift with Production-Pressure-Operated Valves -- 10.11 - Plunger-assisted intermittent gas lift -- 10.12 - General considerations for gas lift systems with wells on intermittent gas lift -- References -- Chapter 11 - Continuous gas lift troubleshooting -- 11.1 - Introduction -- 11.2 - General difficulties encountered when trying to perform troubleshooting analyses of gas lift wells -- 11.3 - Causes and corrective actions for possible failures and/or loss of lifting efficiency -- 11.3.1 - Most common failures and/or loss of lifting efficiency -- 11.3.1.1 - Instabilities -- 11.3.1.2 - Inadequate operation of the well -- 11.3.1.3 - Failures or malfunctions of gas lift and completion equipment -- 11.3.1.4 - Deterioration of the reservoir, production tubing, gas injection line, or the flowline -- 11.3.1.5 - Possible causes and solutions when unloading the well cannot be completed -- 11.3.1.6 - Unloading the well cannot be started -- 11.3.2 - Multiple points of injection. , 11.3.3 - Handling problems associated with emulsion generation -- 11.4 - Methodology for troubleshooting analyses -- 11.4.1 - High wellhead injection pressure and the well does not receive injection gas -- 11.4.1.1 - Nitrogen-charged, IPO valves -- 11.4.1.2 - Spring-loaded, IPO valves -- 11.4.1.3 - Nitrogen-Charged, PPO Valves -- 11.4.1.4 - Spring-loaded, PPO valves -- 11.4.2 - Methodology for one or several stable points of injection below the reservoir static liquid level -- 11.4.3 - Continuous gas injection but the well does not produce liquids -- 11.5 - Field techniques for troubleshooting a gas lift well -- 11.5.1 - Communication tests -- 11.5.2 - Downhole pressure and temperature surveys -- 11.5.3 - Use of sonic devices -- 11.5.4 - Use of CO2 injection to determine the point of injection -- 11.5.5 - Downhole pressure and temperature measurements using permanent downhole sensors -- 11.5.6 - Total well depth and liquid level measurements using wireline tools -- 11.5.7 - Downhole temperature measurement using fiber-optic surveys (distributed temperature sensors or DTS) -- 11.5.8 - Measurement of the liquid level (or instantaneous liquid flow rate) inside the test separator -- 11.5.9 - Use of injection gas flow rate measurement charts -- 11.5.10 - Use of wellhead pressure charts -- 11.6 - Automated systems to detect and analyze wells with operational problems in gas lift fields with a large number of w... -- 11.7 - Troubleshooting examples -- 11.7.1 - Example #1: continuous liquid production and gas injection -- injection point might be plugged -- 11.7.2 - Example #2: Fluctuating Injection Pressure and Continuous Liquid Production -- 11.7.3 - Example #3: time intervals of continuous gas injection and liquid production followed by time intervals in which t... -- 11.7.4 - Example #4: well's responses to different choke diameters after a workover job. , 11.7.5 - Example #5: continuous gas injection but the well does not produce liquids. , English
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Amsterdam, Netherlands; : Elsevier,
    UID:
    almatuudk_9923224149402884
    Format: 1 online resource (416 pages)
    Edition: 1st ed.
    ISBN: 9780443159022
    Series Statement: Aerospace Engineering Series
    Content: This book, edited by Claude Phipps, delves into the principles and applications of laser propulsion in space. It explores fundamental theories, including laser ablation propulsion, photon propulsion, and beamed energy propulsion, highlighting their potential to revolutionize space transport. The book examines the Breakthrough Starshot program, which aims to achieve interstellar travel using photonic propulsion. It provides insights into the design and performance of laser-driven engines and discusses the role of high-power lasers in space situational awareness and debris management. The content is intended for aerospace engineers, researchers, and professionals interested in advanced space propulsion technologies and their future missions.
    Note: Front Cover -- Laser Propulsion in Space -- Copyright -- Contents -- Contributors -- Preface -- Overview -- Synthesis -- 1 Basic theory of laser propulsion -- 1.1 Introduction -- 1.2 Theory of laser ablation propulsion -- 1.3 Fluence (energy density on the target) -- 1.4 Pulse duration -- 1.5 Diffraction limits -- 1.6 There are several optima for Cm -- 1.7 Calculating coupling coefficients for a flight -- 1.7.1 Plasma regime -- 1.7.2 Vapor regime -- 1.7.3 Combining the vapor and plasma regimes -- 1.8 Photon propulsion -- 1.9 Beamed energy propulsion -- 1.10 Comparing laser-driven and electric thrusters -- 1.10.1 Electric thrusters -- 1.10.2 Other thruster types -- 1.11 Performance of electric and laser propulsion engines -- 1.12 Thermal coupling -- 1.13 Pulsed vs. CW photon propulsion -- 1.14 Ground-based vs. space-based laser ranging -- 1.15 Applications of laser ablation propulsion -- 1.15.1 Laser space debris removal and JCA -- 1.16 Laser launching to LEO -- 1.16.1 Laser launching to Mars and beyond from LEO -- 1.16.2 Disposing GEO junk -- 1.16.3 Onboard laser propulsion -- 1.16.4 High power FEL laser engine -- 1.16.5 Laser plasma thruster (LPT) -- 1.17 Challenges -- 1.17.1 Laser development -- 1.17.2 Putting the laser in orbit -- 1.17.3 Funding -- 1.17.4 International cooperation -- 1.17.5 Failing to push through liability concerns with international cooperation -- 1.17.6 Knowledge gaps -- 1.18 The future of laser space propulsion -- 1.19 Other applications of the Starshot laser -- 1.19.1 X-ray lasers -- 1.20 Conclusions -- References -- 2 Breakthrough Starshot program overview -- 2.1 Life in the universe -- 2.1.1 What is life? -- 2.1.2 Intelligence -- 2.2 Origins of the Breakthrough Initiatives -- 2.2.1 Breakthrough Listen -- 2.2.2 Breakthrough Watch -- 2.3 Breakthrough Starshot -- 2.3.1 A brief history of directed energy propulsion. , 2.3.2 The Breakthrough Starshot program -- 2.3.3 Lightsail -- 2.3.4 Interstellar communications -- 2.3.5 Photon Engine -- 2.4 Designing a photon engine -- 2.4.1 Sensing and controlling the array -- 2.5 Hierarchical optical phased arrays -- 2.5.1 Sub-array architecture -- 2.5.2 Building the hierarchy -- 2.6 Atmospheric correction -- 2.7 The cost perspective -- 2.7.1 Breaking down the cost today -- 2.7.2 High power laser requirements -- 2.7.3 Estimating the minimum laser cost -- References -- 3 Starshot system model -- 3.1 Relativistic theory of pure photon propulsion -- 3.1.1 Equation of motion -- 3.1.2 Power equations -- 3.1.3 Beam propagation -- 3.1.4 Numerical solution for nonconstant coefficients -- 3.1.5 Closed-form solutions for constant coefficients -- 3.1.5.1 Lightsail temperature-limited regime -- 3.1.5.2 Source power-limited regime -- 3.1.5.3 Radiated energy -- 3.2 Cost vs. performance -- 3.2.1 Material -- 3.2.2 Trajectory -- 3.2.3 Cost -- 3.2.3.1 Minimization procedure -- 3.2.4 System performance map -- 3.3 What will be required -- 3.3.1 Precursor missions -- 3.3.2 0.2 c missions to the Centauri system -- 3.3.2.1 Launch -- 3.3.2.2 Deployment -- 3.3.2.3 Acceleration -- 3.3.2.4 Cruise -- 3.3.2.5 Flyby science -- 3.3.2.6 Data return -- 3.4 Possibility of human travel to the stars -- 3.4.1 Introduction -- 3.4.2 Assumptions -- 3.4.2.1 Beam bootstrapping and changeover -- 3.4.2.2 Technology figures of merit -- 3.4.3 Power, timeframe, and affordability -- 3.4.3.1 Will power be affordable in future years? -- 3.4.4 System performance map -- 3.4.5 Reference missions -- 3.4.5.1 1.0 t to Alpha Centauri at 0.075 c -- 3.4.5.2 20 kt to Tau Ceti at 0.70 c -- 3.4.5.3 1.0 Mt to Trappist-1 at 0.99 c -- 3.4.5.4 Further afield -- 3.4.6 Concluding remarks -- References. , 4 Space situational awareness: the potential role of lasers in long-term sustainability of space operations -- 4.1 Introduction -- 4.2 Number of objects in orbit -- 4.3 Feared events -- 4.4 Kessler syndrome -- 4.5 Potential actions -- 4.6 Cataloging orbital objects thanks to laser ranging -- 4.7 Deorbiting debris in low Earth orbit -- 4.8 Debris nudging in low Earth orbit and large debris traffic management -- 4.9 Reorbiting large debris in GEO -- 4.10 Synthesis -- 5 State of the art in high-power lasers -- 5.1 Introduction -- 5.2 High-power CW lasers -- 5.2.1 Gas lasers -- 5.2.2 Solid-state lasers -- 5.3 Fiber lasers -- 5.3.1 Limitations to power scaling in individual fiber lasers -- 5.3.2 State-of-the-art fiber laser performance -- 5.4 High-power pulsed lasers -- 5.4.1 High-pulse-energy lasers -- 5.4.2 Ultra-short-pulse lasers -- 5.5 Beam combining -- 5.5.1 Spectral beam combining -- 5.5.2 Coherent beam combining -- References -- 6 High-power laser engines -- 6.0 Preface -- 6.1 Physical basics of laser propulsion -- 6.2 Pulsejet and ramjet laser propulsion -- 6.3 Laser ablation propulsion (LAP) -- 6.4 Laser thermal propulsion (LTP) -- 6.5 Some examples of improving the thrust characteristics of laser engines -- 6.6 Optical design of space vehicles with high-power laser engines -- 6.7 Conclusion -- Glossary -- References -- Auxiliary references -- 7 Large-scale directed energy -- 7.1 Introduction -- 7.2 Two modes of operation for propulsion - direct drive mode vs indirect drive mode -- 7.3 A roadmap to the future -- 7.4 Directed energy approaches - DDM -- 7.5 Phased-array laser -- 7.6 Modularity and scalability -- 7.7 Low-mass DDM cases -- 7.8 Avatar example - human missions including landing - facts are inconvenient truths -- 7.9 Stopping is useful -- 7.10 Avatar - ISV Venture Star analysis -- 7.11 Economics considerations. , 7.12 Indirect drive mode for high-mass missions in our solar system -- 7.13 Ground vs space deployment -- 7.14 Limitation of ground-based array deployment -- 7.15 Polar deployment -- 7.16 Space-based deployment options -- 7.17 Conclusions -- Acknowledgments -- References -- 8 The ways to improve momentum and kinetic efficiency of laser propulsion -- 8.1 Introduction -- 8.2 An overview of the ways to improve -- 8.2.1 Materials and structure properties important for laser impact -- 8.2.1.1 Energetic materials -- 8.2.1.2 Porous and thin-film materials -- 8.2.1.3 Confined layers -- 8.2.2 Parameters of laser radiation leading to high momentum coupling -- 8.2.2.1 Wavelength and pulse length -- 8.2.2.2 Pulse sequencing -- 8.3 Dimensionless dependencies -- 8.3.1 Residual heat issues at long-lasting laser irradiation -- 8.3.2 Combined impact effects -- 8.3.2.1 Electric and magnetic fields -- 8.3.2.2 Spatial confinement -- 8.3.3 Space debris recycling for laser propulsion -- 8.3.4 Overall power-to thrust efficiency for laser propulsion -- 8.4 Conclusions -- References -- 9 Laser-driven, In-Tube Accelerator (LITA) -- 9.1 Introduction -- 9.2 Experimental demonstrations -- 9.2.1 LITA with inert driver gas -- 9.2.2 LITA with on-board ablator -- 9.2.3 LITA with on-wall ablator -- References -- 10 Fly by light - demos and prizes -- Acronyms used in this chapter -- 10.1 Foreword -- 10.2 Introduction (by Gregg Maryniak, XPRIZE Foundation) -- 10.3 LightPod racing venue -- 10.3.1 NASA's BEAM activity -- 10.3.2 Static vs. dynamic charging-terrestrial -- 10.3.3 Electrified highways-in-the-sky -- 10.4 Beam-powered UAV case studies: lessons learned -- 10.4.1 Online design tools -- 10.4.2 Consistent themes -- 10.4.3 Receiver specific power -- 10.4.4 Momentum coupling coefficients -- 10.5 LightPod racer conceptual design -- 10.5.1 Helix specifications. , 10.5.2 Propeller static and dynamic thrust -- 10.5.3 Beamed energy receiver design -- 10.5.4 eVTOL drivetrain design -- 10.6 Near-term competition ideas -- 10.6.1 Pylon race prize -- 10.6.2 Over-the-horizon prize -- 10.6.3 Quiet eVTOL prize -- 10.6.4 Vertical drag racing prizes: Drone/ UAV -- 10.6.5 Laser launch competitions: UAV -- 10.7 Audacious competition ideas -- 10.7.1 Vertical drag racing prizes: Manned -- 10.7.2 Affordable space tourism prize -- 10.7.3 Spaceport hopping trials -- 10.8 Appendix A: Twelve beam-powered UAV case studies -- 10.8.1 Brown's Microwave Helicopter (1964) -- 10.8.2 AstroFlight's Sunrise (1974) -- 10.8.3 Canada's SHARP-5 (1987) -- 10.8.4 MILAX aircraft (1992) -- 10.8.5 SABER helicopters (1995) -- 10.8.5.1 SABER transmitter -- 10.8.5.2 UAF's Kyosho Concept 30DX helicopter -- 10.8.5.3 Brown's Kyosho EP Concept helicopter -- 10.8.5.4 Opportunities for stable liftoff and hover -- 10.8.6 NASA's Laser Airplane (2003) -- 10.8.7 Delta kiteplane (2006) -- 10.8.8 AirRobot quadcopter (2008) -- 10.8.9 PowerLight's Pelican (2010) -- 10.8.10 PowerLight's Stalker (2012) -- 10.8.11 NRL's Tandem Helicopter (2012-2013) -- 10.8.12 METI hexcopter (2019) -- 10.9 Appendix B: Prize concept brief for zero carbon flight-LightPod racing venues -- 10.9.1 Competition objective (vision/ goal) -- 10.9.2 LightPod racing class -- 10.9.3 Problem statement (the challenge) -- 10.9.4 Detailed problem statement -- 10.9.4.1 Political: -- 10.9.4.2 Economic: -- 10.9.4.3 Social: -- 10.9.4.4 Technological: -- 10.9.4.5 Legal: -- 10.9.4.6 Environmental: -- 10.9.4.7 Belief: -- 10.9.5 Where SSPS and BEP regimes might merge -- 10.10 Appendix C: Preliminary conceptual design of a 100 MW suborbital launch array -- 10.10.1 Vision and game plan -- 10.10.2 Prior BEPS and MTLS DARPA-funded projects -- 10.10.3 Basic challenge, in a nutshell. , 10.10.3.1 Source and frequency selection.
    Additional Edition: ISBN 9780443159039
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    London, United Kingdom :Academic Press, an imprint of Elsevier,
    UID:
    almatuudk_9923224430802884
    Format: 1 online resource (406 pages)
    ISBN: 9780128144008 , 0128144009
    Note: Front Cover -- Red Wine Technology -- Copyright Page -- Contents -- List of Contributors -- Prologue -- 1 Grape Maturity and Selection: Automatic Grape Selection -- 1.1 Physicochemical Characteristics of Enological Interest -- 1.2 Vineyard Approaches to Grape Selection and Harvest Date Determination -- 1.2.1 Spatial Variability in Vineyard and Precision Viticulture Tools -- 1.2.2 Grape Harvest and Selection in Vineyard -- 1.2.2.1 Manual Grape Selection in Vineyard by Visual Inspection -- 1.2.2.2 Selective Harvest of Different Parts of the Cluster -- 1.2.2.3 Selective Harvest Based on Vineyard Area -- 1.2.2.4 Time-Differential Harvest -- 1.2.2.5 Toward Automated Grape Cluster Selection and Harvest -- 1.3 Grape Selection in Winery -- 1.3.1 Sorting Tables in Winery -- 1.3.2 Size, Density, and Image Analysis Sorting Equipment -- 1.3.3 New Perspectives for the Direct Grape Quality Evaluation and Selection in Winery -- References -- 2 Acidification and pH Control in Red Wines -- 2.1 Importance of Acidic Fraction and pH Control in Red Wines -- 2.2 Main Organic Acids in Must and Wine -- 2.2.1 Tartaric Acid -- 2.2.2 Malic Acid -- 2.2.3 Citric Acid -- 2.2.4 Lactic Acid -- 2.2.5 Succinic Acid -- 2.2.6 Acetic Acid -- 2.3 Total Acidity and Wine pH -- 2.3.1 Definition of pH -- 2.3.2 Total Acidity, Titratable Acidity, and Real Acidity -- 2.3.3 Variations of Acidity During Winemaking -- 2.4 Acid-Base Equilibrium and Wine Buffer Capacity -- 2.4.1 Acid-Base Equilibrium in Wine -- 2.4.2 Buffer Capacity -- 2.5 Traditional Strategies for Chemical Acidification -- 2.5.1 Acidification by Blending with Musts or Wines From Low Maturity Grapes -- 2.5.2 Acidification by Supplementation with Organic Acids -- 2.6 Traditional Strategies for Chemical Deacidification -- 2.6.1 Deacidification by Using Processing Aids -- 2.7 New Technologies for pH Control. , 2.7.1 Acidification and Deacidification by Electromembrane Techniques -- 2.7.2 Ion Exchange Resins -- 2.8 Laboratory Techniques for Measuring pH and Acidic Fraction -- Acknowledgments -- References -- 3 Maceration and Fermentation: New Technologies to Increase Extraction -- 3.1 Introduction -- 3.2 Tank Design for Red Winemaking -- 3.3 Vessel Materials in Red Winemaking -- 3.4 Kinetics of Extraction: The Effect of Temperature -- 3.5 Mechanical Processes During Maceration -- 3.5.1 Punch Downs and Pump Overs -- 3.5.2 Rack and Return -- 3.5.3 Submerged Cap -- 3.5.4 Extended Maceration -- 3.6 New Extraction Technologies -- 3.6.1 High Hydrostatic Pressure -- 3.6.2 Pulsed Electric Fields -- 3.6.3 Ultrasounds -- 3.6.4 Irradiation -- 3.6.5 Pulsed Light -- 3.6.6 Ozone and Electrolyzed Water -- 3.7 Conclusions -- References -- 4 Use of Non-Saccharomyces Yeasts in Red Winemaking -- 4.1 Introduction -- 4.2 Yeast Ecology of Grape Berry -- 4.3 Controlled Fermentation: The Role of Saccharomyces cerevisiae -- 4.4 Non-Saccharomyces Yeasts Features in Red Wine -- 4.4.1 The Enzymatic Activities -- 4.4.2 The Influence on the Aroma Profile -- 4.4.3 The Polysaccharides Production and Color Stability -- 4.4.4 Acidification and Deacidification Activities -- 4.4.5 Reduction of Ethanol Content -- 4.4.6 Antimicrobial Activities -- References -- 5 Yeast Biotechnology for Red Winemaking -- 5.1 Introduction -- 5.2 Yeast Diversity in Red Grapes and Musts -- 5.3 Influence of Red Wine Technology on Saccharomyces Strains -- 5.3.1 Saccharomyces Strains Dominate in the Wine Ecosystem -- Saccharomyces Specific Niche -- 5.3.2 Nitrogen Competition During Winemaking -- 5.3.3 Redox and Temperature Effects in Red Winemaking -- 5.3.4 Alcohol and Polyphenol Contents in Red Winemaking -- 5.3.5 Saccharomyces cerevisiae and Red Wine Color. , 5.3.6 Cell Wall Adsorption and Cell Lysis Effects on Anthocyanins -- 5.3.6.1 Cell Wall Anthocyanins Adsorption -- 5.3.6.2 β-Glycosidase Activity -- 5.3.6.3 Polysaccharide Release -- 5.3.7 Formation of Derived Anthocyanin Compounds by Yeast Fermentation Improves Color -- 5.4 Saccharomyces Cerevisiae and Flavor Compounds -- 5.4.1 Saccharomyces cerevisiae Synthesis of Flavor Compounds -- 5.4.2 Saccharomyces Enzymes Effects on Flavor -- 5.5 Practical Red Winemaking and Yeast Performance -- 5.5.1 Use of Commercial Yeasts -- 5.5.2 Saccharomyces-Lactic Acid Bacteria Interactions During Winemaking -- 5.5.3 Aging and Microbial Stability -- Acknowledgments -- References -- Further Reading -- 6 Malolactic Fermentation -- 6.1 Introduction -- 6.2 Lactic Acid Bacteria in Winemaking -- 6.2.1 Oenococcus oeni -- 6.2.2 Lactobacillus sp. -- 6.2.3 Pediococcus sp. -- 6.3 Factors Impacting LAB at Winery -- 6.3.1 Ethanol -- 6.3.2 pH -- 6.3.3 Sulfur Dioxide -- 6.3.4 Temperature -- 6.4 Technological Strategies for Managing the MLF Performance -- 6.5 Impact of MLF on Wine Organoleptic Properties -- 6.5.1 Carbonyl Compounds -- 6.5.2 Esters -- 6.5.3 Monoterpenes -- 6.6 Production of Off-Flavors by Lactic Acid Bacteria -- 6.6.1 Volatile Sulfur Compounds -- 6.7 Implications of LAB and MLF in Wine Safety -- 6.7.1 Biogenic Amines -- 6.7.2 Ethyl Carbamate -- 6.8 Conclusion -- Acknowledgments -- References -- 7 Yeast-Bacteria Coinoculation -- 7.1 Introduction -- 7.2 Objectives -- 7.2.1 Controlling Wine Acidity -- 7.2.2 Reducing Ethanol Yields and Volatile Acidity -- 7.2.3 Controlling Microbial Spoilage -- 7.2.4 Reducing Wine Toxins: Ochratoxin, Biogenic Amines, Ethyl Carbamate -- 7.2.5 Modification of the Organoleptic Characteristics -- 7.3 Interactions Between Wine Microorganisms -- Acknowledgments -- References -- 8 Molecular Tools to Analyze Microbial Populations in Red Wines. , 8.1 Introduction -- 8.2 Classical and Phenotypic Methods -- 8.3 DNA-Based Methods -- 8.3.1 Randomly Amplified Polymorphic DNA PCR Fingerprints (RAPD-PCR) -- 8.3.2 PCR-Restriction Fragment Length Polymorphism -- 8.3.3 Terminal Restriction Fragment Length Polymorphism -- 8.3.4 Gradient Gel Electrophoresis -- 8.3.5 Quantitative Real-Time PCR (QPCR) and Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) -- 8.3.6 Capillary Electrophoresis Single-Strand Conformation Polymorphism -- 8.3.7 Automated Ribosomal Intergenic Spacer Analysis -- 8.3.8 Next Generation Sequencing -- 8.4 Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry -- 8.5 Microbial Diversity Assessment Through Enzymes Detection -- 8.6 Culture-Dependent Versus Culture-Independent Methods -- 8.7 Conclusions -- References -- Further Reading -- 9 Barrel Aging -- Types of Wood -- 9.1 Brief Historical Introduction -- 9.2 The Main Tree Species Used in Cooperage -- 9.3 The Main Forests Providing Wood For Cooperage -- 9.4 The Concept of Wood Grain in Cooperage -- 9.5 Obtaining the Staves: Hand Splitting and Sawing -- 9.6 Drying Systems: Natural Seasoning and Artificial Drying -- 9.7 Assembly and Toasting of the Barrel -- 9.8 Types of Barrels and Barrel Parts -- 9.9 What Happens to a Wine During Barrel Aging -- 9.10 Volatile Substances Released by Oak Wood During Barrel Aging -- 9.11 Phenolic Compounds Released by Oak Wood During Barrel Aging -- 9.12 Oxygen Permeability of Oak Wood -- 9.13 Influence of Wood Grain -- 9.14 Influence of Botanical and Geographic Origin -- 9.15 Influence of Natural Seasoning and Artificial Drying -- 9.16 Influence of Toasting Level -- 9.17 Influence of the Repeated Use of Barrels -- 9.18 Barrel Aging Process -- Acknowledgments -- References -- Further Reading -- 10 Emerging Technologies for Aging Wines: Use of Chips and Micro-Oxygenation. , 10.1 Why Aging Wines in Barrels? -- 10.2 The Micro-Oxygenation Technique -- 10.3 Positive Factors of Using Micro-Oxygenation -- 10.3.1 Incidence on Yeast Development During Alcoholic Fermentation -- 10.3.2 Wine Chromatic Characteristics and Stability -- 10.3.3 Improvement of Astringency and Mouthfeel -- 10.3.4 Improvement of Wine Aroma and Reduction of Vegetal Characteristics -- 10.4 The Application of the MOX Technique -- 10.5 The Use of Oak Chips -- 10.6 When and How Use Them -- 10.7 Effect of Adding Oak Chips on Wine Characteristics -- 10.8 Comparing the Effect of Chips or MOX With Aging Wine in Barrels -- 10.9 The Combined Used of MOX+CHIPS -- 10.10 Innovations in MOX and Chips Application -- 10.10.1 Innovations in MOX -- 10.10.2 Innovations in the Treatment With Chips -- References -- Further Reading -- 11 New Trends in Aging on Lees -- 11.1 Introduction -- 11.2 Use of Non-Saccharomyces Yeasts -- 11.3 Accelerated Aging on Lees -- 11.4 Lees Aromatization -- 11.5 Conclusions -- References -- Further Reading -- 12 Evolution of Proanthocyanidins During Grape Maturation, Winemaking, and Aging Process of Red Wines -- 12.1 Proanthocyanidins: Composition, Content, and Evolution During Grape Maturation -- 12.1.1 General Composition and Content of Proanthocyanidins in Grapes -- 12.1.2 Evolution of Proanthocyanidins During Grape Maturation -- 12.2 Evolution of Proanthocyanidins During Fermentative Maceration of Red Wines -- 12.3 Changes on Proanthocyanidins During Red Wine Aging in Contact with Wood -- 12.3.1 Natural Evolution of the Proanthocyanidins During Aging -- 12.3.2 Effects of the Medium Factors on the Proanthocyanidin Evolution -- 12.3.3 Wood Influence on Wine Proanthocyanidin Evolution -- 12.4 Final Remarks -- References -- 13 Wine Color Evolution and Stability -- 13.1 Introduction -- 13.2 Anthocyanin Stability. , 13.2.1 Chemical Structure of Anthocyanins.
    Additional Edition: ISBN 9780128143995
    Additional Edition: ISBN 0128143991
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages