Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    London, England :Academic Press,
    UID:
    almafu_9961896937502883
    Format: 1 online resource (460 pages)
    Edition: First edition.
    ISBN: 9780323958752 , 0323958753 , 9780323953931 , 032395393X
    Note: Front Cover -- Agroforestry for Carbon and Ecosystem Management -- Agroforestry for Carbon and Ecosystem Management -- Copyright -- Contents -- List of contributors -- Editor biographies -- Preface -- I General/introduction -- 1 - Agroforestry for carbon and ecosystem management: an overview -- 1.1 Introduction -- 1.2 Role of agroforestry -- 1.3 Issues and challenges of agroforestry -- 1.4 Potential and prospects of agroforestry -- 1.5 Agroforestry and sustainability -- 1.6 Carbon management through agroforestry -- 1.7 Agroforestry and its ecosystem services -- 1.8 Application of remote sensing and modeling in agroforestry-a future look -- 1.9 Future directives, research and development toward agroforestry development -- 1.10 Policy framework for implementation of agroforestry -- 1.11 Conclusion -- References -- II - Agroforestry: A way for sustainability -- 2 - Agroforestry for resource diversification and sustainable development -- 2.1 Introduction -- 2.2 Agricultural sustainability -- 2.3 Integrated land use systems -- 2.4 Resource availability and diversity in agroforestry -- 2.5 Agroforestry enhances the fertility of the soil -- 2.6 Agroforestry can restore degraded lands -- 2.7 Agroforestry for sloppy land management -- 2.8 Agroforestry is a proven system of food production -- 2.9 Agroforestry meets nutritional quality and farmer health -- 2.10 Agroforestry enhances household income -- 2.11 Agroforestry generates employment -- 2.12 Agroforestry to support rural livelihoods -- 2.13 Gender role and decision-making in agroforestry -- 2.14 Legal framework -- 2.15 Research and development -- 2.16 Conclusion -- References -- 3 - Agroforestry and agriculture intensification -- 3.1 Introduction -- 3.2 History of agroforestry -- 3.3 Classification of agroforestry systems used in intensive agriculture -- 3.4 Main types of agroforestry systems. , 3.4.1 Agrisilviculture -- 3.4.1.1 Windbreaks, shelterbelts, and live hedges -- 3.4.1.2 Taungya -- 3.4.1.3 Alley cropping/hedgerow intercropping -- 3.4.1.4 Shifting cultivation -- 3.4.1.5 Home gardens -- 3.4.1.6 Agroforestry parklands -- 3.4.1.7 Timber and fuelwood production -- 3.4.1.8 Improved fallows -- 3.4.1.9 Multistage systems -- 3.4.2 Silvopastoralim -- 3.4.2.1 Woody plantations associated with grazing animals -- 3.4.2.2 Trees in pastures -- 3.4.3 Agrosilvopastoralism -- 3.4.3.1 Home gardens involving animals -- 3.4.3.2 Multiresource woody hedges with animals -- 3.5 Agroforestry in agricultural intensification and ecosystem services -- 3.5.1 Agroforestry for space management -- 3.5.2 Agroforestry for soil characteristics and soil conservation -- 3.5.3 Agroforestry for biodiversity conservation -- 3.5.4 Agroforestry for biomass production -- 3.5.5 Agroforestry for erosion reduction -- 3.5.6 Agroforestry for the positive use of shading -- 3.5.7 Agroforestry for carbon management -- 3.5.8 Agroforestry for increased income -- 3.5.9 Agroforestry and its role in agricultural intensification concerning food security and climate change -- 3.6 Challenges of agroforestry systems -- 3.7 Research and development about agricultural intensification through agroforestry -- 3.8 Policy and legal framework for agricultural intensification through agroforestry -- 3.9 Future perspective of agricultural intensification through agroforestry -- 3.10 Conclusion -- References -- 4 - Agroforestry for degraded land use systems -- 4.1 Introduction -- 4.2 Agroforestry for degraded agricultural land -- 4.3 Agroforestry for degraded forestland -- 4.4 Agroforestry for mine-degraded lands -- 4.5 Agroforestry for degraded salt-affected lands -- 4.6 The role of local people in the restoration of degraded land use systems. , 4.7 Barriers to restoration of degraded lands through agroforestry practices -- 4.8 Agroforestry research and development for restoration of DLS -- 4.9 Agroforestry policy and legal framework for restoration of DLS -- 4.10 Future thrust or roadmap for the use of agroforestry in degraded land use systems -- 4.11 Conclusion -- References -- 5 - Agroforestry and biodiversity conservation -- 5.1 Introduction -- 5.2 Benefits of agroforestry to biodiversity -- 5.3 Agroforestry and soil biodiversity -- 5.4 Agroforestry and faunal diversity -- 5.5 Agroforestry and plant diversity -- 5.6 Achieving global biodiversity conservation goals through agroforestry -- 5.7 Agroforestry interventions supporting biodiversity conservation -- 5.8 Agroforestry, biodiversity, and carbon management -- 5.9 Research and development for biodiversity conservation in AFS -- 5.10 Policy framework for biodiversity conservation in AFS -- 5.11 Future roadmap for biodiversity conservation in AFS -- 5.12 Conclusions -- References -- 6 - Agroforestry to mitigate the climate change -- 6.1 Introduction -- 6.2 Agroforestry systems in Asia/Europe and other countries -- 6.3 Sustainable agroforestry practices: faith and facts -- 6.4 Climate change: cause and impacts -- 6.5 Carbon sequestration in an agroforestry system for offsetting C footprints -- 6.6 Scanning agroforestry system for climate change mitigation -- 6.7 Agroforestry system for soil organic carbon sequestration -- 6.8 C sequestration in different land use conversion to agroforestry system -- 6.9 Agroforestry system for environmental sustainability -- 6.10 Farmer's perception toward agroforestry adoption -- 6.11 Constraints in agroforestry promotion among farmers -- 6.12 Agroforestry recommendation in global organizations -- 6.13 Policy and future roadmap for agroforestry research -- 6.14 Conclusions -- References. , Further reading -- 7 - Tree shelterbelts for sustainable agroforestry -- 7.1 Introduction -- 7.2 How shelterbelts work -- 7.3 Microclimate modification -- 7.3.1 Soil moisture -- 7.3.2 Air temperature -- 7.3.3 Soil temperature -- 7.3.4 Relative humidity -- 7.3.5 CO2 concentration -- 7.3.6 Photosynthesis -- 7.4 Crop response to shelter -- 7.4.1 Crop growth and development -- 7.4.2 Crop yield and quality -- 7.5 Ecosystem services and environmental benefits of shelterbelts -- 7.6 Shelterbelt for carbon management and sustainability -- 7.7 Conclusion -- References -- III - Agroforestry carbon management -- 8 - Carbon sink, mitigation, and sequestration under climate change -- 8.1 Introduction -- 8.2 The global carbon sinks -- 8.3 Carbon sequestration in agroforestry systems -- 8.4 The role of agroforestry in climate change mitigation and adaptation -- 8.5 Challenges in implementing agroforestry for climate change mitigation and adaptation -- 8.6 Research directions for carbon sinks, climate change mitigation and adaptation -- 8.7 Legal and policy framework for climate change mitigation and adaptation -- 8.8 Conclusion -- References -- 9 - Carbon flux and budget of agroforestry -- 9.1 Introduction -- 9.2 Services of agroforestry -- 9.3 World scenario of agroforestry -- 9.4 Carbon flux -- 9.5 Carbon flux in agroforestry -- 9.6 Agroforestry budget -- 9.7 Role of agroforestry in carbon mitigation -- 9.8 Management strategies for agroforestry -- 9.9 Conclusion -- 9.10 Future perspectives -- Acknowledgements -- References -- 10 - Carbon fraction and pools in plants and soil -- 10.1 Introduction -- 10.2 Global carbon pool -- 10.2.1 Soil carbon pool -- 10.2.2 Carbon cycle and SOC -- 10.2.3 Forms of C pool in different ecosystem -- 10.2.4 Methods for field measurement -- 10.2.5 Distribution of carbon pools -- 10.2.6 Alteration in carbon pools of plant and soil. , 10.2.7 Principles for analyzing soil carbon pool changes -- 10.2.8 Method for estimating forest carbon pool changes -- 10.3 Measurement of carbon pool changes -- 10.3.1 Aboveground biomass -- 10.3.2 Belowground biomass -- 10.3.3 Litter -- 10.3.4 Dead wood -- 10.3.5 Soil organic carbon -- 10.4 Basic assumptions to measure soil carbon -- 10.5 Soil carbon pools and fluxes in the urban ecosystem -- 10.6 Effect of global warming on SOC -- 10.6.1 Climate change -- 10.6.2 SOC response to global warming -- 10.6.3 Factors affecting SOC response to global warming -- 10.6.4 The balance of C input to, and output from the soil -- 10.6.5 Rate of decomposition under the global warming -- 10.7 Impact of potential climate change on SOM -- 10.8 Carbon sequestration -- 10.9 Carbon fraction -- 10.10 Characteristics of SOC pool -- 10.10.1 Active SOC pool -- 10.10.2 Passive SOC pool -- 10.10.3 Slow SOC pool -- 10.10.4 Types of soil carbon fraction -- 10.10.5 Soil conceptual pool -- 10.10.6 SOC as an indicator of soil quality -- 10.10.7 Impact of management strategies on SOC pool -- 10.11 Conclusion -- 10.12 Future perspectives -- Acknowledgements -- References -- 11 - Carbon credit, trading, green economy, and clean development mechanisms -- 11.1 Introduction -- 11.2 Carbon credit -- 11.2.1 How does carbon credit work? -- 11.2.2 Carbon credit markets -- 11.3 Carbon trading -- 11.3.1 Urban trees as carbon traders -- 11.3.2 Forest trees in carbon trading -- 11.3.3 Personal carbon trading -- 11.3.4 Role of agroforestry in carbon credit -- 11.4 Today's carbon trading market -- 11.5 Green response to economies -- 11.5.1 Why a green economy? -- 11.5.2 Green economy in sustainability development -- 11.6 Carbon offset to protect the environment -- 11.7 Kyoto protocol -- 11.7.1 The European emissions trading scheme -- 11.7.2 The clean development mechanism. , 11.7.2.1 Man sectors of CDM in Pakistan.
    Additional Edition: Print version: Jhariya, Manoj Kumar Agroforestry for Carbon and Ecosystem Management San Diego : Elsevier Science & Technology,c2023
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949983549202882
    Format: 1 online resource (400 pages)
    Edition: First edition.
    ISBN: 9780443139499 , 0443139490
    Series Statement: Micro and Nano Technologies
    Content: This book explores the integration of advanced nanomaterials into renewable and clean energy systems, highlighting their preparation, application, and effectiveness. Edited by Sahar Zinatloo-Ajabshir and Ardashir Mohammadzadeh, the book delves into the use of nanomaterials in various technologies such as perovskite-based solar cells, dye-sensitized solar cells, hydrogen storage, and Li-ion batteries. It addresses the basics of photovoltaic panels, solar energy applications, and financial aspects of solar energy projects. The authors provide insights into the role of micro and nano technologies in enhancing the efficiency and sustainability of energy systems. The book is targeted at researchers, practitioners, and students interested in the latest advancements in nanotechnology and renewable energy.
    Note: Front Cover -- Renewable and Clean Energy Systems Based on Advanced Nanomaterials -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Renewable and clean energy systems based on advanced nanomaterials, basics, and developments -- References -- 2 Advanced nanomaterials for perovskite based solar cells -- 2.1 General introduction -- 2.2 Metal oxide nanoparticles -- 2.2.1 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.1.1 TiO2 -- 2.2.1.2 SnO2 -- 2.2.1.3 ZnO -- 2.2.1.4 Other MOs -- 2.2.1.5 Double layer ETLs -- 2.2.2 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.2.1 NiOX -- 2.2.2.2 MoOx -- 2.2.2.3 Other MOs -- 2.3 Carbon nanomaterials -- 2.4 Quantum dots -- 2.5 Other advanced nanomaterials -- 2.6 Conclusion and outlook -- Nomenclature -- References -- 3 Advanced nanomaterials for dye sensitized solar cells -- 3.1 General introduction -- 3.2 Structure of dye-sensitized solar cell -- 3.3 Nanomaterials usage in dye-sensitized solar cells -- 3.3.1 Photoanodes -- 3.3.1.1 One-dimensional nanomaterials -- 3.3.1.2 Two-dimensional nanostructures -- 3.3.1.3 Three-dimensional hierarchical nanostructures -- 3.3.1.4 Nanocomposites -- 3.3.2 Counter electrode -- 3.3.2.1 Platinum -- 3.3.2.2 Platinum alloys -- 3.3.2.3 Carbon -- 3.3.2.3.1 Carbon black -- 3.3.2.3.2 Carbon nanotubes -- 3.3.2.3.3 Graphene sheets -- 3.3.2.4 Transition metal compounds -- 3.4 Conclusion and outlook -- References -- 4 Mixed metal oxide-based nanomaterials for hydrogen storage -- 4.1 General introduction -- 4.2 Electrochemical hydrogen storage -- 4.3 Hydrogen storage mechanism -- 4.3.1 Physisorption and chemisorption -- 4.3.2 Redox process -- 4.3.3 Spillover effect -- 4.3.4 Other mechanism -- 4.4 Materials -- 4.4.1 Pristine mixed metal oxides -- 4.4.2 Composites -- 4.4.2.1 Carbonous-based nanocomposites. , 4.4.2.2 Polymer-based nanocomposites (polymer support) -- 4.4.2.3 Two-dimensional-based nanocomposites (layered support) -- 4.4.2.4 Metal-organic frameworks -- 4.5 Conclusion and outlook -- References -- 5 Graphitic carbon nitride/graphene-based nanomaterials for hydrogen storage -- 5.1 General introduction -- 5.2 Graphene-based material -- 5.2.1 Graphene-based nanomaterials for hydrogen storage -- 5.3 Graphitic carbon nitride -- 5.3.1 Graphitic carbon nitride for hydrogen storage -- 5.4 Graphene/graphitic carbon nitride for hydrogen storage -- 5.5 Conclusion and outlook -- References -- 6 Active nanomaterials for Li-ion batteries and advanced nanomaterials for supercapacitors -- 6.1 General introduction -- 6.2 Active materials: nanostructuring versus microstructuring -- 6.3 Morphology controlling -- 6.3.1 Zero-dimensional structures -- 6.3.2 One-dimensional structures -- 6.3.3 Two-dimensional structures -- 6.3.4 Three-dimensional structures -- 6.4 Advanced electrode materials -- 6.4.1 Metal-organic frameworks (MOFs) -- 6.4.2 MXenes -- 6.4.3 Layered double hydroxides -- 6.5 Conclusion and outlook -- References -- 7 Basics of photovoltaic panels and an overview of the use of solar energy in the world -- 7.1 Introduction -- 7.2 Brief history of using the sun as an energy source -- 7.2.1 Billion years ago, solar energy began to radiate to the Earth -- 7.3 Introducing photovoltaic systems -- 7.3.1 Current solar energy businesses -- 7.3.2 Electricity production costs with photovoltaic technology -- 7.3.3 The advantages and disadvantages of solar energy -- 7.3.4 Comparing energy generation technologies -- 7.3.5 Top ten companies producing photovoltaic panels -- 7.4 The basics of photovoltaic panels -- 7.4.1 Introduction -- 7.4.2 Photovoltaic technologies -- 7.4.3 Monocrystalline cells -- 7.4.4 Polycrystalline cells -- 7.4.5 Thin-film cells. , 7.4.6 The components of a solar power plant -- 7.4.7 Converters -- 7.4.8 Solar photovoltaic modules -- 7.4.9 Mounting rack (framework or foundation) -- 7.4.10 Grid connection -- 7.4.11 Solar cell efficiency -- 7.4.11.1 Converter efficiency -- 7.4.12 Standards -- 7.4.13 The performance factor of photovoltaic power plants -- References -- 8 The efficiency of solar panels and power control -- 8.1 Introduction -- 8.2 Solar panel modeling -- 8.2.1 Obtaining the parameter of simple exponential models -- 8.3 Battery modeling -- 8.4 Converter modeling -- 8.5 Optimal operating point tracking algorithms -- 8.5.1 The perturbation and observation algorithm -- 8.5.2 Base voltage algorithms -- 8.5.3 Bird count algorithm -- 8.5.4 Fuzzy methods -- 8.5.5 Type-2 fuzzy systems for modeling uncertainties -- 8.6 Control design -- 8.6.1 Problem 1 -- 8.6.2 Simulation -- 8.6.3 Conclusion -- 8.7 Examples of solar energy deployment -- 8.7.1 Large solar farms -- 8.7.2 The Bhadla Solar Park in India -- 8.7.3 Pavagada solar park -- 8.7.4 Tengger desert project in the Ningxia Province of China -- 8.7.5 Longyangxia Dam Solar Park -- 8.7.6 Longyangxia Dam Solar Park -- 8.7.7 Longyangxia Dam Solar Park -- 8.7.8 Villanueva Solar -- 8.7.9 Kamuthi Solar Power Plant -- 8.7.10 Solar Star solar farm -- 8.7.11 Golmud solar park of China -- 8.7.12 Topaz solar power plant of California -- 8.7.13 Agua Caliente power plant of Arizona -- 8.7.14 Meuro power plant -- 8.7.15 Iran's photovoltaic power plants -- 8.7.16 The Ghadir solar power plant of Isfahan -- 8.7.17 Example of trough parabolic power plants -- 8.7.18 Examples of solar power towers -- 8.7.19 Small- and medium-sized solar power plants -- 8.7.20 Domestic power plants -- 8.7.21 Iran's photovoltaic power plants -- 8.7.21.1 Shiraz solar power plant -- 8.7.21.2 Tabriz solar power plant -- 8.7.21.3 Mashhad solar power plant. , 8.7.21.4 Taleghan solar power plant -- 8.8 Household power plants -- 8.8.1 Household use of solar power plants in Kashan -- 8.8.2 Reduction in greenhouse gas emissions achieved by the photovoltaic power plant in Haljerd -- 8.8.2.1 Kyoto protocol -- 8.8.2.2 Principles -- 8.8.2.3 Details -- 8.8.2.4 Financial commitments -- 8.8.2.5 Purchasing and selling greenhouse publications -- 8.8.2.6 Greenhouse gas emissions of various power plants in their lifetime -- 8.8.3 Equalization of nonemission of carbon dioxide -- 8.8.4 Equalization with the area of forestation -- 8.8.5 Equalization of carbon dioxide reduction by a 100kW photovoltaic power plant -- 8.8.6 Equalization of a 100kW photovoltaic power plant with unburned gasoline -- 8.8.7 Equalization of the 100kW photovoltaic power plant with forestation -- References -- 9 The physics of sunlight and cells -- 9.1 Introduction -- 9.2 The sun -- 9.2.1 Properties of sunlight -- 9.2.2 The functional principles of solar cells -- 9.2.2.1 Production of charge carriers based on the absorption of photons in bond-forming materials -- 9.2.2.2 Sequential analysis of the charge carriers of the photovoltaic generator in a bond -- 9.2.2.3 Collecting the photovoltaic charge carriers in terminals -- 9.2.2.4 Loss mechanisms -- 9.2.3 The basic physics of semiconductors -- 9.2.4 Materials -- 9.2.5 Atomic structure -- 9.2.6 Doping -- 9.2.7 Doped semiconductors -- 9.2.8 The history of the photovoltaic effect -- 9.2.9 The photovoltaic effect -- 9.2.10 Recombination -- 9.2.11 Auger electron spectroscopy -- 9.2.11.1 The Auger effect and electron emission -- 9.2.11.2 Examples of applications -- 9.2.11.3 Samples -- 9.2.12 Optical absorption processes -- References -- 10 The different methods of using solar energy -- 10.1 Introduction -- 10.2 Dye-sensitized solar cells. , 10.2.1 The structure and working principle of dye-sensitized solar cells -- 10.2.2 Types of dye sensitizers -- 10.3 Organic solar cells -- 10.3.1 The working principle of organic solar cells -- 10.3.2 Advantages -- 10.3.3 Disadvantages -- 10.3.4 Concentrator photovoltaics technology -- 10.3.5 Specifications of concentrator modules -- 10.3.6 New and emerging concepts of solar cells -- 10.3.7 Solar thermal energy -- 10.3.8 Solar water heaters -- 10.3.9 Solar air conditioning -- 10.3.9.1 Solar absorption air conditioning -- 10.3.9.2 Photovoltaic air conditioning system -- 10.3.10 Absorption chillers -- 10.3.11 Desync cooling systems -- 10.3.12 Solar ovens and furnaces -- 10.3.13 Floating photovoltaic systems -- 10.4 Technical discussions -- 10.5 Feasibility in Middle East -- 10.6 The components of floating photovoltaic power plants -- 10.7 Evaluating the photovoltaic power plant installed at sea -- 10.8 Using the photovoltaic system for water treatment -- 10.9 Treatment system mechanisms -- 10.10 Different water treatment technologies -- 10.10.1 Distillation -- 10.10.2 Electrodialysis -- 10.10.3 Reverse osmosis -- 10.10.4 Advantages -- 10.10.5 Disadvantages -- 10.10.6 Challenges of water treatment using the photovoltaic system -- 10.10.7 Economic advantages -- References -- 11 Financial analysis of solar energy -- 11.1 Introduction -- 11.2 Reducing costs in manufacturing system components -- 11.2.1 Standardized design of photovoltaic systems -- 11.2.2 System volume -- 11.2.3 Solar cell efficiency -- 11.3 Reducing cost in sales and distribution of system component -- 11.4 Reducing installation and repair costs -- 11.5 Improving the efficiency of financial systems and programs -- 11.6 Improving equipment performance and correcting amplifier characteristics -- 11.6.1 Microgrids and their operating modes. , 11.6.2 Overview of control technology for multiple inverters in off-grid mode.
    Additional Edition: ISBN 9780443139505
    Additional Edition: ISBN 0443139504
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edoccha_9961601671102883
    Format: 1 online resource (400 pages)
    Edition: 1st ed.
    ISBN: 0-443-13949-0
    Series Statement: Micro and Nano Technologies Series
    Note: Front Cover -- Renewable and Clean Energy Systems Based on Advanced Nanomaterials -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Renewable and clean energy systems based on advanced nanomaterials, basics, and developments -- References -- 2 Advanced nanomaterials for perovskite based solar cells -- 2.1 General introduction -- 2.2 Metal oxide nanoparticles -- 2.2.1 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.1.1 TiO2 -- 2.2.1.2 SnO2 -- 2.2.1.3 ZnO -- 2.2.1.4 Other MOs -- 2.2.1.5 Double layer ETLs -- 2.2.2 Metal oxide electron transporting layers (MO-ETLs) -- 2.2.2.1 NiOX -- 2.2.2.2 MoOx -- 2.2.2.3 Other MOs -- 2.3 Carbon nanomaterials -- 2.4 Quantum dots -- 2.5 Other advanced nanomaterials -- 2.6 Conclusion and outlook -- Nomenclature -- References -- 3 Advanced nanomaterials for dye sensitized solar cells -- 3.1 General introduction -- 3.2 Structure of dye-sensitized solar cell -- 3.3 Nanomaterials usage in dye-sensitized solar cells -- 3.3.1 Photoanodes -- 3.3.1.1 One-dimensional nanomaterials -- 3.3.1.2 Two-dimensional nanostructures -- 3.3.1.3 Three-dimensional hierarchical nanostructures -- 3.3.1.4 Nanocomposites -- 3.3.2 Counter electrode -- 3.3.2.1 Platinum -- 3.3.2.2 Platinum alloys -- 3.3.2.3 Carbon -- 3.3.2.3.1 Carbon black -- 3.3.2.3.2 Carbon nanotubes -- 3.3.2.3.3 Graphene sheets -- 3.3.2.4 Transition metal compounds -- 3.4 Conclusion and outlook -- References -- 4 Mixed metal oxide-based nanomaterials for hydrogen storage -- 4.1 General introduction -- 4.2 Electrochemical hydrogen storage -- 4.3 Hydrogen storage mechanism -- 4.3.1 Physisorption and chemisorption -- 4.3.2 Redox process -- 4.3.3 Spillover effect -- 4.3.4 Other mechanism -- 4.4 Materials -- 4.4.1 Pristine mixed metal oxides -- 4.4.2 Composites -- 4.4.2.1 Carbonous-based nanocomposites. , 4.4.2.2 Polymer-based nanocomposites (polymer support) -- 4.4.2.3 Two-dimensional-based nanocomposites (layered support) -- 4.4.2.4 Metal-organic frameworks -- 4.5 Conclusion and outlook -- References -- 5 Graphitic carbon nitride/graphene-based nanomaterials for hydrogen storage -- 5.1 General introduction -- 5.2 Graphene-based material -- 5.2.1 Graphene-based nanomaterials for hydrogen storage -- 5.3 Graphitic carbon nitride -- 5.3.1 Graphitic carbon nitride for hydrogen storage -- 5.4 Graphene/graphitic carbon nitride for hydrogen storage -- 5.5 Conclusion and outlook -- References -- 6 Active nanomaterials for Li-ion batteries and advanced nanomaterials for supercapacitors -- 6.1 General introduction -- 6.2 Active materials: nanostructuring versus microstructuring -- 6.3 Morphology controlling -- 6.3.1 Zero-dimensional structures -- 6.3.2 One-dimensional structures -- 6.3.3 Two-dimensional structures -- 6.3.4 Three-dimensional structures -- 6.4 Advanced electrode materials -- 6.4.1 Metal-organic frameworks (MOFs) -- 6.4.2 MXenes -- 6.4.3 Layered double hydroxides -- 6.5 Conclusion and outlook -- References -- 7 Basics of photovoltaic panels and an overview of the use of solar energy in the world -- 7.1 Introduction -- 7.2 Brief history of using the sun as an energy source -- 7.2.1 Billion years ago, solar energy began to radiate to the Earth -- 7.3 Introducing photovoltaic systems -- 7.3.1 Current solar energy businesses -- 7.3.2 Electricity production costs with photovoltaic technology -- 7.3.3 The advantages and disadvantages of solar energy -- 7.3.4 Comparing energy generation technologies -- 7.3.5 Top ten companies producing photovoltaic panels -- 7.4 The basics of photovoltaic panels -- 7.4.1 Introduction -- 7.4.2 Photovoltaic technologies -- 7.4.3 Monocrystalline cells -- 7.4.4 Polycrystalline cells -- 7.4.5 Thin-film cells. , 7.4.6 The components of a solar power plant -- 7.4.7 Converters -- 7.4.8 Solar photovoltaic modules -- 7.4.9 Mounting rack (framework or foundation) -- 7.4.10 Grid connection -- 7.4.11 Solar cell efficiency -- 7.4.11.1 Converter efficiency -- 7.4.12 Standards -- 7.4.13 The performance factor of photovoltaic power plants -- References -- 8 The efficiency of solar panels and power control -- 8.1 Introduction -- 8.2 Solar panel modeling -- 8.2.1 Obtaining the parameter of simple exponential models -- 8.3 Battery modeling -- 8.4 Converter modeling -- 8.5 Optimal operating point tracking algorithms -- 8.5.1 The perturbation and observation algorithm -- 8.5.2 Base voltage algorithms -- 8.5.3 Bird count algorithm -- 8.5.4 Fuzzy methods -- 8.5.5 Type-2 fuzzy systems for modeling uncertainties -- 8.6 Control design -- 8.6.1 Problem 1 -- 8.6.2 Simulation -- 8.6.3 Conclusion -- 8.7 Examples of solar energy deployment -- 8.7.1 Large solar farms -- 8.7.2 The Bhadla Solar Park in India -- 8.7.3 Pavagada solar park -- 8.7.4 Tengger desert project in the Ningxia Province of China -- 8.7.5 Longyangxia Dam Solar Park -- 8.7.6 Longyangxia Dam Solar Park -- 8.7.7 Longyangxia Dam Solar Park -- 8.7.8 Villanueva Solar -- 8.7.9 Kamuthi Solar Power Plant -- 8.7.10 Solar Star solar farm -- 8.7.11 Golmud solar park of China -- 8.7.12 Topaz solar power plant of California -- 8.7.13 Agua Caliente power plant of Arizona -- 8.7.14 Meuro power plant -- 8.7.15 Iran's photovoltaic power plants -- 8.7.16 The Ghadir solar power plant of Isfahan -- 8.7.17 Example of trough parabolic power plants -- 8.7.18 Examples of solar power towers -- 8.7.19 Small- and medium-sized solar power plants -- 8.7.20 Domestic power plants -- 8.7.21 Iran's photovoltaic power plants -- 8.7.21.1 Shiraz solar power plant -- 8.7.21.2 Tabriz solar power plant -- 8.7.21.3 Mashhad solar power plant. , 8.7.21.4 Taleghan solar power plant -- 8.8 Household power plants -- 8.8.1 Household use of solar power plants in Kashan -- 8.8.2 Reduction in greenhouse gas emissions achieved by the photovoltaic power plant in Haljerd -- 8.8.2.1 Kyoto protocol -- 8.8.2.2 Principles -- 8.8.2.3 Details -- 8.8.2.4 Financial commitments -- 8.8.2.5 Purchasing and selling greenhouse publications -- 8.8.2.6 Greenhouse gas emissions of various power plants in their lifetime -- 8.8.3 Equalization of nonemission of carbon dioxide -- 8.8.4 Equalization with the area of forestation -- 8.8.5 Equalization of carbon dioxide reduction by a 100kW photovoltaic power plant -- 8.8.6 Equalization of a 100kW photovoltaic power plant with unburned gasoline -- 8.8.7 Equalization of the 100kW photovoltaic power plant with forestation -- References -- 9 The physics of sunlight and cells -- 9.1 Introduction -- 9.2 The sun -- 9.2.1 Properties of sunlight -- 9.2.2 The functional principles of solar cells -- 9.2.2.1 Production of charge carriers based on the absorption of photons in bond-forming materials -- 9.2.2.2 Sequential analysis of the charge carriers of the photovoltaic generator in a bond -- 9.2.2.3 Collecting the photovoltaic charge carriers in terminals -- 9.2.2.4 Loss mechanisms -- 9.2.3 The basic physics of semiconductors -- 9.2.4 Materials -- 9.2.5 Atomic structure -- 9.2.6 Doping -- 9.2.7 Doped semiconductors -- 9.2.8 The history of the photovoltaic effect -- 9.2.9 The photovoltaic effect -- 9.2.10 Recombination -- 9.2.11 Auger electron spectroscopy -- 9.2.11.1 The Auger effect and electron emission -- 9.2.11.2 Examples of applications -- 9.2.11.3 Samples -- 9.2.12 Optical absorption processes -- References -- 10 The different methods of using solar energy -- 10.1 Introduction -- 10.2 Dye-sensitized solar cells. , 10.2.1 The structure and working principle of dye-sensitized solar cells -- 10.2.2 Types of dye sensitizers -- 10.3 Organic solar cells -- 10.3.1 The working principle of organic solar cells -- 10.3.2 Advantages -- 10.3.3 Disadvantages -- 10.3.4 Concentrator photovoltaics technology -- 10.3.5 Specifications of concentrator modules -- 10.3.6 New and emerging concepts of solar cells -- 10.3.7 Solar thermal energy -- 10.3.8 Solar water heaters -- 10.3.9 Solar air conditioning -- 10.3.9.1 Solar absorption air conditioning -- 10.3.9.2 Photovoltaic air conditioning system -- 10.3.10 Absorption chillers -- 10.3.11 Desync cooling systems -- 10.3.12 Solar ovens and furnaces -- 10.3.13 Floating photovoltaic systems -- 10.4 Technical discussions -- 10.5 Feasibility in Middle East -- 10.6 The components of floating photovoltaic power plants -- 10.7 Evaluating the photovoltaic power plant installed at sea -- 10.8 Using the photovoltaic system for water treatment -- 10.9 Treatment system mechanisms -- 10.10 Different water treatment technologies -- 10.10.1 Distillation -- 10.10.2 Electrodialysis -- 10.10.3 Reverse osmosis -- 10.10.4 Advantages -- 10.10.5 Disadvantages -- 10.10.6 Challenges of water treatment using the photovoltaic system -- 10.10.7 Economic advantages -- References -- 11 Financial analysis of solar energy -- 11.1 Introduction -- 11.2 Reducing costs in manufacturing system components -- 11.2.1 Standardized design of photovoltaic systems -- 11.2.2 System volume -- 11.2.3 Solar cell efficiency -- 11.3 Reducing cost in sales and distribution of system component -- 11.4 Reducing installation and repair costs -- 11.5 Improving the efficiency of financial systems and programs -- 11.6 Improving equipment performance and correcting amplifier characteristics -- 11.6.1 Microgrids and their operating modes. , 11.6.2 Overview of control technology for multiple inverters in off-grid mode.
    Additional Edition: ISBN 0-443-13950-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages