Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam :Elsevier,
    UID:
    almahu_9949697773302882
    Umfang: 1 online resource (522 pages)
    ISBN: 0-323-90343-6
    Inhalt: "Ecological Significance of Riparian Ecosystems: Challenges and Management Strategies examines the current issues related to river ecosystems, their environmental importance, pollution issues and potential management strategies. The book is divided into 4 key themes: Basics of river ecosystem, Natural phenomenon of river ecosystem, Human-induced problems of river ecosystem, and Management measures for the river ecosystem. Through these four themes, the contributors present both practical and theoretical aspects of river ecosystem in changing climate. An emphasis has been made on the recent research of climate change and its impact on the river ecosystem."--
    Anmerkung: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Chapter 1 - An overview of human health risk from opium alkaloids and related pharmaceutical products pollution in aquati ... -- 1.1 Introduction -- 1.2 Opium and alkaloid-based industries -- 1.2.1 Health effects of opium -- 1.2.1.1 Oxidative stress -- 1.2.1.2 Increased plasminogen activator inhibitor-1 -- 1.2.1.3 Decreased plasma adiponectin -- 1.2.1.4 Deficiency of testosterone and estrogen -- 1.2.1.5 Hyperprolactinemia -- 1.2.1.6 Insulin resistance -- 1.2.2 Addiction due to psychoactive drugs -- 1.2.3 Extraction of opium from poppy -- 1.2.4 Characteristics of opium alkaloid wastewater -- 1.2.5 Government opium and alkaloid factories -- 1.2.5.1 Products of the factory -- 1.3 Active pharmaceutical ingredients -- 1.4 Impacts of pharmaceutical products on aquatic ecosystem -- 1.5 Effects of various opium alkaloids on human health -- 1.6 Treatment approach -- 1.6.1 Physicochemical treatment -- 1.6.2 Biological treatment -- 1.6.2.1 Aerobic treatment -- 1.6.2.2 Anaerobic treatment -- 1.6.3 Membrane separation -- 1.6.4 Fenton's oxidation -- 1.7 Concluding remarks -- Conflict of Interest -- Acknowledgment -- References -- Chapter 2 - Impact of pharmaceuticals and antibiotics waste on the river ecosystem: a growing threat -- 2.1 Introduction -- 2.2 Pharmaceuticals and antibiotics waste -- 2.3 Rules and regulations for surveillance of pharmaceuticals and antibiotics in water ecosystem -- 2.4 Sources of pharmaceuticals and antibiotics in water ecosystem -- 2.5 Impact of pharmaceuticals and antibiotics on aquatic ecosystem -- 2.5.1 Impact on freshwater system -- 2.5.2 Probable environmental impact of pharmaceuticals via behavioral changes -- 2.5.3 Bioaccumulation -- 2.5.4 Chronic effects on human health. , 2.5.4.1 Physiological effects -- 2.5.4.2 Effect on host microbiomes -- 2.5.4.3 Antimicrobial resistance -- 2.5.5 Impact on aquatic animals -- 2.6 Approaches for remediation of pharmaceuticals and antibiotics -- 2.6.1 Biodegradation -- 2.6.2 Absorption -- 2.6.3 Membrane processes -- 2.6.4 Coagulation, flocculation, and sedimentation -- 2.6.5 Advance oxidation process -- 2.6.6 Ion exchange -- 2.6.7 Photolysis -- 2.7 Preventing future pharmaceutical waste contamination -- 2.7.1 Minimization and reduction -- 2.7.1.1 Healthy lifestyle -- 2.7.1.2 Public awareness -- 2.7.1.3 Patient compliance and education -- 2.7.1.4 Health care practitioner's education -- 2.7.1.5 Marketing presentations -- 2.7.2 Reuse and recycling -- 2.7.2.1 Donation and recycle of medicines -- 2.7.3 Proper disposal -- 2.7.3.1 Take back programs -- 2.8 Conclusion -- References -- Chapter 3 - Heavy metal contamination in the river ecosystem -- 3.1 Introduction -- 3.1.1 River ecosystem -- 3.1.2 Sources and contamination of the rivers -- 3.1.3 Classifications of river contaminants -- 3.2 Heavy metals contamination in the rivers -- 3.2.1 Sources of heavy metals in the river water -- 3.2.2 Bioaccumulation and biomagnification of heavy metals -- 3.2.3 Adverse health impact on the organism -- 3.3 Preventive strategies to deal with heavy metal contamination in water -- 3.4 Conclusion -- References -- Chapter 4 - Factors influencing the alteration of microbial and heavy metal characteristics of river systems in the Niger ... -- 4.1 Introduction -- 4.2 River systems in the Niger Delta -- 4.3 Characteristics of river systems in the Niger Delta -- 4.3.1 Iron -- 4.3.2 Zinc -- 4.3.3 Cadmium -- 4.3.4 Chromium -- 4.3.5 Lead -- 4.3.6 Mercury -- 4.3.7 Copper -- 4.3.8 Cobalt -- 4.3.9 Nickel -- 4.3.10 Manganese -- 4.3.11 Arsenic. , 4.3.12 Microbial characteristics -- 4.3.12.1 Microbial population -- 4.3.12.2 Microbial diversity -- 4.4 Factors influencing the alteration of rivers system quality in the Niger Delta -- 4.4.1 Anthropogenic activities -- 4.4.2 Poor waste management -- 4.4.3 Industrial effluents -- 4.4.4 Oil and gas -- 4.4.5 Dredging -- 4.4.6 Agriculture -- 4.4.7 Makeshift or artisanal refinery -- 4.4.8 Water transportation -- 4.4.9 Human induced natural effects -- 4.5 Conclusion and the way forward -- References -- Chapter 5 - Impact of climate change on the river ecosystem -- 5.1 Introduction -- 5.2 River ecosystem -- 5.3 General flow pattern of river -- 5.4 Channelization of river -- 5.5 Impact of climate change on river ecosystem -- 5.6 Changes of streamflow and flood/drought indices -- 5.7 Climatic adaptations -- 5.8 Mitigating the effects of climatic change -- 5.9 Conclusion -- References -- Chapter 6 - Geospatial technology for sustainable management of water resources -- 6.1 Introduction -- 6.1.1 Water light and interaction (IOP and AOP) -- 6.1.2 Remote sensing strength in river ecosystems -- 6.2 River ecosystem management -- 6.3 Remote Sensing for delineation of river systems -- 6.3.1 River ecosystem network extraction using remote sensing -- 6.4 Monitoring water budget components: remote sensing-based observations -- 6.4.1 Precipitation -- 6.4.1.1 Multisatellite algorithms for precipitation -- 6.4.2.1 METRIC ET data access using EE flux -- 6.4.3 Surface water -- 6.4.4 Groundwater -- 6.5 Remote sensing in water quality monitoring -- 6.5.1 Role of hyperspectral data -- 6.6 Synthetic aperture radar data in river monitoring -- 6.7 Future scope of water quality -- 6.7.1 Satellites of geosynchronous earth orbit for wide range of coverage -- 6.7.2 Joint polar satellite system -- 6.7.3 Hyperspectral missions. , 6.7.4 Sub surface water from GRACE-FO and NASA ISRO synthetic aperture radar mission (NISAR) -- 6.7.5 Surface water ocean topography -- 6.7.6 Sentinel 6B -- 6.7.7 Landsat 9 -- 6.8 Conclusion -- Acknowledgment -- References -- Chapter 7 - Chemical and isotopic variability of Bhagirathi river water (Upper Ganga), Uttarakhand, India -- 7.1 Introduction -- 7.2 Study area and methodology -- 7.3 Major ion chemistry of Bhagirathi river -- 7.4 Isotopic studies of Bhagirathi river -- 7.5 Discussion and conclusion -- Acknowledgments -- References -- Chapter 8 - Occurrence and distribution of perfluoroalkyl acids in rivers: Impact and risk assessment -- 8.1 Introduction -- 8.2 Naming conventions and uses -- 8.2.1 Anionic form of chemical names -- 8.2.2 "PFAS", not "PFASs" -- 8.2.3 Families of PFAS -- 8.3 Sources of the perfluoroalkyl acids -- 8.4 Environmental fate and transport process -- 8.5 Occurrence and distribution in rivers and sediment -- 8.6 Ecological and health effects -- 8.7 Regulation -- 8.7.1 Safe drinking water act -- 8.7.2 Toxic substances control act (TSCA) -- 8.8 Remediation techniques -- 8.8.1 Adsorption -- 8.8.2 Membrane filtration -- 8.8.3 Advanced oxidation process -- 8.8.4 Plasma -- 8.8.5 Biodegradation process -- 8.8.6 Thermal destruction -- 8.8.7 Sonochemical degradation -- 8.9 Conclusion -- References -- Chapter 9 - Socio-economic perspective of river health: A case study of river Ami, Uttar Pradesh, India -- 9.1 The framework -- 9.2 Methodology -- 9.2.1 Study area -- 9.2.2 Water quality parameter -- 9.3 Impact and vulnerabilities -- 9.3.1 Social -- 9.3.1.1 Health and population -- 9.3.1.2 Livelihood -- 9.3.1.3 Aesthetic and spiritual value -- 9.3.2 Environmental -- 9.3.2.1 Biodiversity -- 9.3.2.2 Water quality and pollution -- 9.3.2.3 Flood and drought -- 9.3.2.4 Ecological. , 9.3.3 Economical -- 9.3.3.1 Agriculture and irrigation -- 9.3.3.2 Tourism and recreations -- 9.3.3.3 Fisheries -- 9.3.3.4 Manufacturing and industry -- 9.3.3.5 Transportation -- 9.4 Result and discussion -- 9.4.1 Source of pollution -- 9.4.2 Status of pollution -- 9.4.3 Strategies to improve water quality -- 9.4.4 Effect of socioeconomic measures -- 9.5 Conclusions -- References -- Chapter 10 - Sources of ions in the river ecosystem -- 10.1 Introduction -- 10.2 Source of ions in the water body -- 10.2.1 Agronomical production -- 10.2.1.1 Agricultural nutrients -- 10.2.1.2 Pesticides -- 10.2.1.3 Salts -- 10.2.1.4 Sediment -- 10.2.2 Livestock production -- 10.2.2.1 Organic matter -- 10.2.3 Fisheries -- 10.2.3.1 Other elements -- 10.3 Determinant water quality parameters -- 10.3.1 Thermal regime of the river -- 10.3.2 Flow regime -- 10.3.3 Light/opaqueness -- 10.3.4 Water conductivity -- 10.3.5 Concentration of dissolved gases -- 10.3.6 Acidity and alkalinity of river water -- 10.3.7 Major cations and anions in the river -- 10.3.8 Dissolved nutrients -- 10.3.9 Land use/land cover alteration -- 10.3.10 Expansion in urban settlement -- 10.4 Effective measures for maintaining and restoring the river water quality -- 10.4.1 Phytoremediation -- 10.4.2 Rhizofiltration -- 10.4.3 Heavy metal pollutant control methods -- 10.4.4 Chemical precipitation -- 10.4.5 Coagulation-flocculation -- 10.4.6 Flotation -- 10.4.7 Aeration -- 10.4.8 Membrane filtration -- 10.4.9 Ion exchange -- 10.4.10 Use of reed plants -- 10.4.11 Electrochemical treatment -- 10.4.12 Microbial biosorption -- 10.4.13 Use of plants for the treatment of pollutant -- 10.5 Conclusion -- References -- Chapter 11 - Nutrients contamination and eutrophication in the river ecosystem -- 11.1 Introduction -- 11.2 Sources of nutrients. , 11.3 Importance of aquatic plants.
    Weitere Ausg.: Print version: Madhav, Sughosh Ecological Significance of River Ecosystems San Diego : Elsevier,c2022 ISBN 9780323850452
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Woodhead Publishing,
    UID:
    almahu_9949328459002882
    Umfang: 1 online resource (546 pages)
    ISBN: 0-323-85472-9
    Serie: Woodhead Publishing Series in Electronic and Optical Materials
    Inhalt: "Radiation Dosimetry Phosphors provides an overview of the synthesis, properties and applications of materials used for radiation dosimetry and reviews the most appropriate phosphor materials for each radiation dosimetry technique. The book describes the available phosphors used commercially for their applications in the medical field for dose measurements. Although radiation dosimetry phosphors are commercially available, continuous efforts have been made by the worldwide research community to develop new materials or improve already existing materials used in different areas with low or high levels of radiation. Moreover, researchers are still working on developing dosimetric phosphors for OSL, ML, LL and RPL dosimetry."--
    Anmerkung: Front cover -- Half title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Introduction to luminescence and radiation dosimetry techniques -- 1.1 Introduction to luminescence -- 1.1.1 Fluorescence and phosphorescence -- 1.2 Mechanism of luminescence -- 1.3 Types of luminescence -- 1.3.1 Bioluminescence -- 1.3.2 Chemiluminescence -- 1.3.3 Electroluminescence -- 1.3.4 Cathodoluminescence -- 1.3.5 Mechanoluminescence -- 1.3.6 Radioluminescence -- 1.3.7 Thermoluminescence -- 1.3.8 Photoluminescence -- 1.3.9 Ionoluminescence -- 1.3.10 Lyoluminescence -- 1.3.11 Optically stimulated luminescence -- 1.4 Introduction to radiation dosimetry -- 1.5 Radiation dosimetry techniques -- 1.5.1 Ionization chamber dosimetry -- 1.5.2 Film dosimetry -- 1.5.3 Luminescence dosimetry -- 1.5.4 Semiconductor dosimetry -- 1.5.5 Chemical dosimetry -- 1.5.6 Gel dosimetry -- Conclusion -- References -- Chapter 2 Principle, mechanism, and models of radiation dosimetry -- 2.1 Introduction -- 2.2 Type of radiation fields -- 2.2.1 Alpha radiation -- 2.2.2 Beta radiation -- 2.2.3 Gamma radiation -- 2.2.4 X-rays -- 2.2.5 Neutron radiation -- 2.3 Basics of radiation dosimetry -- 2.3.1 Definition of dosimetric quantities -- 2.3.2 Units of dosimetric quantities -- 2.4 Interaction of radiation with matter -- 2.4.1 Electrons -- 2.4.2 Neutrons -- 2.4.3 Heavy charged particles -- 2.5 Thermoluminescence, its mechanism, and models -- 2.5.1 Simple model -- 2.6 Advancements in radiation dosimetry -- Conclusion -- References -- Chapter 3 A scrutiny of phosphors for TL radiation dosimetry -- 3.1 Introduction -- 3.2 Thermoluminescence dosimetry -- 3.3 Characteristics of thermoluminescence dosimeter -- 3.3.1 Linearity/linear dose-response -- 3.3.2 Sensitivity -- 3.3.3 Fading -- 3.3.4 Accuracy -- 3.3.5 Precision -- 3.3.6 Dose rate dependence. , 3.3.7 Spatial resolution and physical size -- 3.3.8 Readout convenience -- 3.3.9 Convenience of use -- 3.3.10 Energy dependence -- 3.3.11 Directional dependence -- 3.4 Commercially available dosimeters and need for new phosphors -- 3.5 Review of synthesized phosphors -- 3.5.1 Borates -- 3.5.2 Aluminates -- 3.5.3 Phosphates -- 3.5.4 Sulfates -- 3.6 Challenges in synthesizing phosphors -- Conclusion -- References -- Chapter 4 Exploration of commercially available phosphors for thermoluminescence dosimetry -- 4.1 Introduction -- 4.2 Commercial thermoluminescence dosimeters (TLDs) -- 4.3 Practical applications of available dosimeters -- 4.3.1 Environmental dosimetry -- 4.3.2 Personnel dosimetry -- 4.3.3 Medical applications of TL dosimetry -- 4.3.4 High-dose dosimetry -- 4.3.5 Neutron dosimetry -- 4.3.6 Space dosimetry -- 4.3.7 Archaeological dating -- 4.4 Exploration of commercially available phosphors -- 4.4.1 LiF:Mg Ti and LiF: Mg Cu, P -- 4.4.2 Li2B4O7:Mn -- 4.4.3 Al2O3:C -- 4.4.4 CaSO4:Dy/Mn -- 4.4.5 CaF2:Dy/Tm/Mn -- 4.5 Future trends -- Concluding remarks -- Acknowledgment -- References -- Chapter 5 Understanding OSL radiation dosimetry and its application -- 5.1 Understanding radiation -- 5.2 Types and sources of radiation -- 5.2.1 Non-ionizing radiation -- 5.2.2 Ionizing radiation -- 5.2.3 Radiation dosimetry -- 5.2.4 Need for radiation dosimetry -- 5.3 Basic units of measurements -- 5.3.1 Exposure -- 5.3.2 Absorbed dose -- 5.3.3 Dose equivalent -- 5.3.4 Integral dose -- 5.3.5 Dose rate -- 5.3.6 Effective dose -- 5.4 International commission on radiological protection -- 5.5 Kinetic energy released per unit mass -- 5.6 Dosimetry systems -- 5.7 Luminescence techniques in radiation dosimetry -- 5.8 Optically stimulated luminescence -- 5.8.1 Definition -- 5.8.2 Historical background. , 5.9 Different readout modes for optically stimulated luminescence -- 5.9.1 Basic phenomenon of optically stimulated luminescence -- 5.9.2 Generalized mathematical description of optically stimulated luminescence -- 5.9.3 Photoionization cross-section -- 5.10 Advantages of optically stimulated luminescence over thermoluminescent -- 5.10.1 Applications of optically stimulated luminescence dosimetry -- 5.10.2 Personnel dosimetry -- 5.10.3 Environmental dosimetry -- 5.10.4 Medical dosimetry -- 5.10.5 Retrospective dosimetry -- 5.11 High dose -- 5.12 Requirements of good optically stimulated luminescence materials [84] -- Conclusion -- References -- Chapter 6 Theory and practice of the methods used to evaluate the physical parameters of electron trapping levels* -- 6.1 Introduction -- 6.2 Historical overview of peak shape methods -- 6.3 Initial rise (IR) method -- 6.3.1 Theory -- 6.3.2 Influence of thermal quenching -- 6.3.3 Influence of background -- 6.4 Various heating rate methods (VHR) -- 6.4.1 Theory -- 6.4.2 Influence of dose -- 6.4.3 Influence of thermal quenching -- 6.4.4 Influence of temperature lag -- 6.5 Isothermal decay methods -- 6.5.1 Theory -- 6.5.2 Analytical expressions -- 6.5.3 Residual isothermal decay method (RID) -- 6.5.4 Prompt isothermal decay method (PID) -- 6.6 Peak shape method (PSM) -- 6.6.1 Theory -- 6.6.2 Generalized derivation methodology for Chen's PSM-general order kinetics case -- 6.6.3 Expressions for generalized Chen's PSM -- 6.6.4 Applications of the generalized Chen's PSM to experimental TL peaks -- 6.6.5 Application of generalized Chen PSM to numerically generated TL peaks -- Acknowledgments -- References -- Chapter 7 Analysis of complex stimulated luminescence (SL) curves using analytical solutions of the one trap one recombination (OTOR) center model* -- 7.1 Introduction -- 7.2 Derivation of the master equation. , 7.2.1 The thermal or optical stimulation stage -- 7.2.2 and the stimulated luminescence modes -- 7.2.3 Analytical solution of the OTOR model -- 7.2.4 On the Lambert -function -- 7.3 The exponential integral in the master equations -- 7.3.1 Elementary function methods -- 7.3.2 Approximations method -- 7.4 Summary of master equation -- 7.5 Analytical expressions in research and applications: analysis of complex experimental curves -- 7.6 Bringing analytical expressions closer to experimental data: the transformed master equations -- 7.7 Transforming the first master equation -- 7.7.1 Condition of maximum intensity for TL signals in the GOT/OTOR model -- 7.7.2 Transformed first master equation for TL: case , -- 7.7.3 Transformed first master equation for TL: case or -- 7.7.4 Condition of maximum intensity for LM-OSL signals in the GOT/OTOR model -- 7.7.5 Transformed first master equation for LM-OSL: case , -- 7.8 Using the first master equation to fit experimental data -- 7.8.1 Peak shaped curves -- 7.9 Conditions required for application of the GCD analysis-the superposition principle -- 7.9.1 The effect of competition on the applicability of the SP-applicability of the quasi-superposition principle (QSP) -- 7.9.2 Detecting the existence of SP in experimental curves -- 7.10 Conclusions -- Acknowledgments -- References -- Chapter 8 Low Zeff phosphors for radiation dosimetry -- 8.1 Introduction -- 8.2 Requirements of low Zeff phosphors -- 8.3 Low Zeff thermoluminescence dosimeters -- 8.3.1 Materials based on LiF -- 8.3.2 Materials based on Li2B4O7 -- 8.3.3 Materials based on MgB4O7 -- 8.3.4 Materials based on BeO -- 8.3.5 Other low Z materials -- 8.4 Practical applications -- 8.4.1 Environmental dosimetry -- 8.4.2 Retrospective dosimetry -- 8.4.3 Medical applications -- 8.4.4 Space dosimetry -- 8.5 Challenges of low Zeff phosphors -- Conclusion. , References -- Chapter 9 Thermoluminescent materials for high-energy dosimetry -- 9.1 Introduction -- 9.2 Interaction of charged particle radiation with matter -- 9.3 Need for high energy dosimeters -- 9.4 Review of existing high energy dosimeters -- 9.4.1 CaSO4:Dy (TLD-900) -- 9.4.2 Al2O3:C (TLD-500) -- 9.4.3 LiF:Mg,Ti (TLD-100) -- 9.4.4 6LiF:Mg,Ti (TLD-600) -- 9.4.5 7LiF:Mg,Ti (TLD-700) -- 9.4.6 CaF2: Dy (TLD-200) -- 9.5 Applications of high energy dosimeters -- 9.6 Gaps in existing materials & -- need for new phosphors -- 9.7 Ongoing research for high energy dosimeters -- 9.8 Future prospects in high energy dosimetry -- Conclusions -- References -- Chapter 10 Nanophosphors for radiation dosimetry -- 10.1 Importance of nanophosphors -- 10.2 Thermoluminescence dosimetry -- 10.3 Synthesis techniques for nanophosphors -- 10.3.1 Precipitation method -- 10.3.2 Hydrothermal method -- 10.3.3 Sol-gel method -- 10.3.4 Spray pyrolysis method -- 10.3.5 Evaporation method -- 10.3.6 Combustion synthesis method -- 10.4 Nanocrystalline TLD materials -- 10.4.1 Cd1-xNixSiO3 nanocrystalline phosphors -- 10.4.2 Nanocrystalline MgB4O7: Dy, Na phosphors -- 10.4.3 Nanocrystalline K2Ca2(SO4)3:Cu+ phosphor -- 10.4.4 Nanocrystalline BaxSr1- xSO4:Dya%,Tbb% powder -- 10.4.5 Proton beam, 50 MeV Li3+ and 120 MeV Ag9+ ion beam irradiated MgB4O7:Dy -- 10.4.6 Garnet type Y2.99Al5-xGaxO12:0.01Pr3+ (YAGG:Pr3+) nanocrystals -- 10.4.7 K3Na(SO4)2:Eu -- 10.4.8 Mg2P2O7:Eu -- 10.4.9 CaAl2O4:Tm3+ -- 10.4.10 CaMg2(SO4)3:Dy3+ -- 10.4.11 Li2B4O7:Dy -- 10.5 Accidental nanophosphor dosimetry -- 10.6 Importance of nanophosphor radiation dosimetry -- 10.7 Future challenges -- References -- Chapter 11 Thermoluminescence radiation dosimetry in sulfate-based phosphors -- 11.1 Introduction -- 11.1.1 Fluorescence technique -- 11.1.2 Lyoluminescence method. , 11.1.3 Electron paramagnetic resonance technique.
    Weitere Ausg.: Print version: Dhoble, Sanjay J. Radiation Dosimetry Phosphors San Diego : Elsevier Science & Technology,c2022 ISBN 9780323854719
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    [Princeton, NJ] :IEEE Press/Wiley,
    UID:
    almafu_9959326897402883
    Umfang: 1 online resource
    ISBN: 9781119232353 , 111923235X , 9781119232308 , 1119232309 , 9781119232322 , 1119232325 , 1119231876 , 9781119231875
    Inhalt: Applies lean manufacturing principles across the cloud service delivery chain to enable application and infrastructure service providers to sustainably achieve the shortest lead time, best quality, and value This book focuses on lean in the context of cloud computing capacity management of applications and the physical and virtual cloud resources that support them. Lean Computing for the Cloud considers business, architectural and operational aspects of efficiently delivering valuable services to end users via cloud-based applications hosted on shared cloud infrastructure. The work also focuses on overall optimization of the service delivery chain to enable both application service and infrastructure service providers to adopt leaner, demand driven operations to serve end users more efficiently. The book's early chapters analyze how capacity management morphs with cloud computing into interlocked physical infrastructure capacity management, virtual resource capacity management, and application capacity management problems. The middle chapters frame cloud capacity management as a lean thinking problem, lay out strategies for applying lean thinking best practices across the cloud service delivery chain, and apply key lean insights from other industries. Later chapters discuss lean reserve capacity, lean demand management, optimal power management, and quantitative performance metrics of lean capacity management, which can be used to methodically drive continuous improvement of lean cloud computing deployments. The final chapter summarizes the book's insights on lean strategies to minimize waste across the cloud computing service delivery chain. . Applies lean thinking across the cloud service delivery chain to recognize and minimize waste. Leverages lessons learned from electric power industry operations to operations of cloud infrastructure. Applies insights from just-in-time inventory management to operation of cloud based applications. Explains how traditional, Information Technology Infrastructure Library (ITIL) and Enhanced Telecom Operation Map (eTOM) capacity management evolves to lean computing for the cloud This book is geared toward professionals with business, operational, architectural, development, and quality backgrounds in the information and communication technology industry. Eric Bauer is Reliability Engineering Manager in the IP Platforms Group of Alcatel-Lucent. Before focusing on reliability engineering, Mr. Bauer spent two decades designing and developing embedded firmware, networked operating systems, internet platforms, and optical transmission systems. He has been awarded more than a dozen US patents, and has authored several books such as Service Quality of Cloud-Based Applications, Reliability and Availability of Cloud Computing, and Design for Reliability: Information and Computer-Based Systems, all of which were published by Wiley-IEEE Press. Mr. Bauer earned his BS in Electrical Engineering from Cornell University and MS in Electrical Engineering from Purdue University.
    Anmerkung: Introduction xi -- Acknowledgments xv -- Abbreviations xvii -- 1. Basics 1 -- 1.1 Cloud Computing Fundamentals 1 -- 1.2 Roles in Cloud Computing 6 -- 1.3 Applications 9 -- 1.3.1 Application Service Quality 11 -- 1.4 Demand, Supply, Capacity, and Fungibility 13 -- 1.5 Demand Variability 16 -- 1.6 Chapter Review 18 -- 2. Rethinking Capacity Management 19 -- 2.1 Capacity Management 19 -- 2.2 Demand Management 21 -- 2.3 Performance Management 21 -- 2.4 Canonical Capacity Management 23 -- 2.4.1 Traditional Capacity Management 24 -- 2.4.2 ITIL Capacity Management 27 -- 2.4.3 eTOM Capacity Management 28 -- 2.4.4 Discussion 30 -- 2.5 Three Cloud Capacity Management Problems 30 -- 2.5.1 Physical Resource Capacity Management 31 -- 2.5.2 Virtual Resource Capacity Management 32 -- 2.5.3 Application Capacity Management 33 -- 2.6 Cloud Capacity Management as a Value Chain 36 -- 2.7 Chapter Review 39 -- 3. Lean Thinking on Cloud Capacity Management 41 -- 3.1 Lean Thinking Overview 41 -- 3.2 Goal 42 -- 3.3 Seeing Waste (Nonvalue-Adding Activities) 43 -- 3.3.1 Reserve Capacity 45 -- 3.3.2 Excess Application Capacity 46 -- 3.3.3 Excess Online Infrastructure Capacity 46 -- 3.3.4 Excess Physical Infrastructure Capacity 46 -- 3.3.5 Inadequate Capacity 47 -- 3.3.6 Infrastructure Overhead 48 -- 3.3.7 Capacity Management Overhead 48 -- 3.3.8 Resource Overhead 49 -- 3.3.9 Power Management Overhead 50 -- 3.3.10 Workload Migration 50 -- 3.3.11 Complexity Overhead 51 -- 3.3.12 Resource Allocation Failure 51 -- 3.3.13 Leaking and Lost Resources 53 -- 3.3.14 Waste Heat 53 -- 3.3.15 Carbon Footprint 54 -- 3.4 Key Principles 54 -- 3.4.1 Move toward Flow 55 -- 3.4.2 Pull versus Push 55 -- 3.4.3 Level the Workload 55 -- 3.4.4 Stop and Fix Problems 55 -- 3.4.5 Master Practices 56 -- 3.4.6 Visual Management 57 -- 3.4.7 Use Well-Tested Technology 57 -- 3.4.8 Take a Long-Term Perspective 58 -- 3.4.9 Grow, Learn, and Teach Others 58 -- 3.4.10 Develop Exceptional People 58 -- 3.4.11 Partners Help Each Other Improve 58. , 3.4.12 Go See 59 -- 3.4.13 Implement Rapidly 59 -- 3.4.14 Become a Learning Organization 59 -- 3.5 Pillar: Respect 59 -- 3.6 Pillar: Continuous Improvement 61 -- 3.7 Foundation 62 -- 3.8 Cadence 62 -- 3.9 Lean Capacity Management Philosophy 63 -- 3.10 Chapter Review 64 -- 4. Lean Cloud Capacity Management Strategy 67 -- 4.1 Lean Application Service Provider Strategy 68 -- 4.1.1 User Workload Placement 71 -- 4.1.2 Application Performance Management 73 -- 4.2 Lean Infrastructure Service Provider Strategies 73 -- 4.2.1 Physical Resource Capacity Management 76 -- 4.3 Full Stream Optimization 77 -- 4.4 Chapter Review 79 -- 5. Electric Power Generation as Cloud Infrastructure Analog 81 -- 5.1 Power Generation as a Cloud Infrastructure Analog 81 -- 5.2 Business Context 83 -- 5.3 Business Structure 86 -- 5.4 Technical Similarities 88 -- 5.5 Impedance and Fungibility 91 -- 5.6 Capacity Ratings 94 -- 5.7 Bottled Capacity 95 -- 5.8 Location of Production Considerations 95 -- 5.9 Demand Management 97 -- 5.10 Demand and Reserves 98 -- 5.11 Service Curtailment 99 -- 5.12 Balance and Grid Operations 100 -- 5.13 Chapter Review 103 -- 6. Application Capacity Management as an Inventory Management Problem 105 -- 6.1 The Application Capacity Management Service Delivery Chain 105 -- 6.2 Traditional Application Service Production Chain 107 -- 6.3 Elasticity and Demand-Driven Capacity Management 108 -- 6.4 Application Service as Retail Analog 110 -- 6.4.1 Locational Consideration 112 -- 6.4.2 Inventory and Capacity 112 -- 6.4.3 Service Level 113 -- 6.4.4 Inventory Carrying Costs 114 -- 6.4.5 Inventory Decision, Planning, and Ordering 115 -- 6.4.6 Agility 118 -- 6.4.7 Changing Consumption Patterns 118 -- 6.5 Chapter Review 118 -- 7. Lean Demand Management 119 -- 7.1 Infrastructure Demand Management Techniques 120 -- 7.1.1 Resource Scheduling 121 -- 7.1.2 Resource Curtailment 121 -- 7.1.3 Mandatory Demand Shaping 122 -- 7.1.4 Voluntary Demand Shaping 123 -- 7.1.5 Scheduling Maintenance Actions 123. , 7.1.6 Resource Pricing 123 -- 7.2 Application Demand Management Techniques 124 -- 7.2.1 Queues and Buffers 124 -- 7.2.2 Load Balancers 124 -- 7.2.3 Overload Controls 125 -- 7.2.4 Explicit Demand Management Actions 125 -- 7.2.5 Scheduling Maintenance Actions 125 -- 7.2.6 User Pricing Strategies 126 -- 7.3 Full Stream Analysis Methodology 126 -- 7.3.1 Analyze Applications' Natural Demand Patterns 127 -- 7.3.2 Analyze Applications' Tolerances 128 -- 7.3.3 Create Attractive Infrastructure Pricing Models 129 -- 7.3.4 Deploy Optimal Infrastructure Demand Management Models 130 -- 7.4 Chapter Review 131 -- 8. Lean Reserves 133 -- 8.1 What Is Reserve Capacity? 133 -- 8.2 Uses of Reserve Capacity 135 -- 8.2.1 Random Demand Peaks 135 -- 8.2.2 Component or Resource Failure 136 -- 8.2.3 Infrastructure Element Failure 136 -- 8.2.4 Infrastructure Resource Curtailment or Demand Management Action 137 -- 8.2.5 Demand Exceeding Forecast 137 -- 8.2.6 Lead Time Demand 137 -- 8.2.7 Catastrophic Failures and Force Majeure Events 139 -- 8.3 Reserve Capacity as a Feature 139 -- 8.4 Types of Reserve Capacity 140 -- 8.4.1 Automatic Infrastructure Power Management Controls 140 -- 8.4.2 Utilize Application Reserve Capacity 141 -- 8.4.3 Place/Migrate Demand into Underutilized Capacity 141 -- 8.4.4 Grow Online Capacity 141 -- 8.4.5 Service Curtailment/Degradation 141 -- 8.4.6 Mandatory Demand Shaping 141 -- 8.4.7 Voluntary Demand Shaping 142 -- 8.4.8 Emergency Reserves 142 -- 8.5 Limits of Reserve Capacity 144 -- 8.6 Ideal Reserve 144 -- 8.6.1 Normal (Co-located) Reserve 144 -- 8.6.2 Emergency (Geographically Distributed) Reserve 146 -- 8.7 Chapter Review 147 -- 9. Lean Infrastructure Commitment 149 -- 9.1 Unit Commitment and Infrastructure Commitment 150 -- 9.2 Framing the Unit Commitment Problem 151 -- 9.3 Framing the Infrastructure Commitment Problem 153 -- 9.4 Understanding Element Startup Time 155 -- 9.5 Understanding Element Shutdown Time 157 -- 9.6 Pulling It All Together 160 -- 9.7 Chapter Review 166. , 10. Lean Cloud Capacity Management Performance Indicators 167 -- 10.1 Perfect Capacity Metrics 168 -- 10.2 Capacity Management Metrics 172 -- 10.3 Infrastructure Commitment Metrics 173 -- 10.4 Waste Metrics 174 -- 10.4.1 Reserve Capacity Waste Metrics 174 -- 10.4.2 Excess Application Capacity Metrics 175 -- 10.4.3 Excess Online Infrastructure Capacity Metrics 175 -- 10.4.4 Excess Physical Infrastructure Capacity Metrics 175 -- 10.4.5 Inadequate Capacity Metrics 175 -- 10.4.6 Infrastructure Overhead Waste Metrics 176 -- 10.4.7 Capacity Management Overhead Waste Metrics 176 -- 10.4.8 Resource Overhead Waste Metrics 176 -- 10.4.9 Power Management Overhead Waste Metrics 177 -- 10.4.10 Workload Migration Metrics 177 -- 10.4.11 Complexity Overhead Metrics 178 -- 10.4.12 Resource Allocation Failure Metrics 178 -- 10.4.13 Leaking and Lost Resources 179 -- 10.4.14 Waste Heat Metrics 179 -- 10.4.15 Carbon Footprint Metrics 180 -- 10.5 Key Principle Indicators 180 -- 10.6 Cost of Poor Quality 181 -- 10.7 Metrics and Service Boundaries 182 -- 10.8 Measurements and Maturity 183 -- 10.9 Chapter Review 185 -- 11. Summary 187 -- 11.1 Cloud Computing as a Service Delivery Chain 187 -- 11.2 Lean Cloud Computing 190 -- 11.3 Reimagining Cloud Capacity 192 -- 11.4 Lean Demand Management 195 -- 11.5 Lean Reserves 197 -- 11.6 Lean Infrastructure Service Provider Considerations 198 -- 11.7 Lean Application Service Provider Considerations 198 -- 11.8 Lean Infrastructure Commitment 199 -- 11.9 Visualizing Perfect Capacity 201 -- 11.10 Lean Cloud Computing Metrics 203 -- 11.11 Concluding Remarks 204 -- References 207 -- About the Author 211 -- Index 213.
    Weitere Ausg.: Print version : ISBN 9781119231875
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Hoboken, NJ, USA :Wiley,
    UID:
    almafu_9959327650202883
    Umfang: 1 online resource
    Ausgabe: Third edition.
    ISBN: 9781118706961 , 111870696X , 9781118706978 , 1118706978 , 9781118706985 , 1118706986 , 9781118706992 , 1118706994 , 9781523123551 , 1523123559
    Anmerkung: Intro -- Title Page -- Copyright Page -- Contents -- Brief Biographies -- Preface -- Acknowledgments -- Acronyms and Initialisms -- Symbols and Units -- Chapter 1 Introducing Fuel Cells -- 1.1 Historical Perspective -- 1.2 Fuel-Cell Basics -- 1.3 Electrode Reaction Rates -- 1.4 Stack Design -- 1.5 Gas Supply and Cooling -- 1.6 Principal Technologies -- 1.7 Mechanically Rechargeable Batteries and Other Fuel Cells -- 1.7.1 Metal-Air Cells -- 1.7.2 Redox Flow Cells -- 1.7.3 Biological Fuel Cells -- 1.8 Balance-of-Plant Components -- 1.9 Fuel-Cell Systems: Key Parameters -- 1.10 Advantages and Applications -- Further Reading -- Chapter 2 Efficiency and Open-Circuit Voltage -- 2.1 Open-Circuit Voltage: Hydrogen Fuel Cell -- 2.2 Open-Circuit Voltage: Other Fuel Cells and Batteries -- 2.3 Efficiency and Its Limits -- 2.4 Efficiency and Voltage -- 2.5 Influence of Pressure and Gas Concentration -- 2.5.1 Nernst Equation -- 2.5.2 Hydrogen Partial Pressure -- 2.5.3 Fuel and Oxidant Utilization -- 2.5.4 System Pressure -- 2.6 Summary -- Further Reading -- Chapter 3 Operational Fuel-Cell Voltages -- 3.1 Fundamental Voltage: Current Behaviour -- 3.2 Terminology -- 3.3 Fuel-Cell Irreversibilities -- 3.4 Activation Losses -- 3.4.1 The Tafel Equation -- 3.4.2 The Constants in the Tafel Equation -- 3.4.3 Reducing the Activation Overpotential -- 3.5 Internal Currents and Fuel Crossover -- 3.6 Ohmic Losses -- 3.7 Mass-Transport Losses -- 3.8 Combining the Irreversibilities -- 3.9 The Electrical Double-Layer -- 3.10 Techniques for Distinguishing Irreversibilities -- 3.10.1 Cyclic Voltammetry -- 3.10.2 AC Impedance Spectroscopy -- 3.10.3 Current Interruption -- Further Reading -- Chapter 4 Proton-Exchange Membrane Fuel Cells -- 4.1 Overview -- 4.2 Polymer Electrolyte: Principles of Operation -- 4.2.1 Perfluorinated Sulfonic Acid Membrane. , 4.2.2 Modified Perfluorinated Sulfonic Acid Membranes -- 4.2.3 Alternative Sulfonated and Non-Sulfonated Membranes -- 4.2.4 Acid-Base Complexes and Ionic Liquids -- 4.2.5 High-Temperature Proton Conductors -- 4.3 Electrodes and Electrode Structure -- 4.3.1 Catalyst Layers: Platinum-Based Catalysts -- 4.3.2 Catalyst Layers: Alternative Catalysts for Oxygen Reduction -- 4.3.2.1 Macrocyclics -- 4.3.2.2 Chalcogenides -- 4.3.2.3 Conductive Polymers -- 4.3.2.4 Nitrides -- 4.3.2.5 Functionalized Carbons -- 4.3.2.6 Heteropolyacids -- 4.3.3 Catalyst Layer: Negative Electrode -- 4.3.4 Catalyst Durability -- 4.3.5 Gas-Diffusion Layer -- 4.4 Water Management -- 4.4.1 Hydration and Water Movement -- 4.4.2 Air Flow and Water Evaporation -- 4.4.3 Air Humidity -- 4.4.4 Self-Humidified Cells -- 4.4.5 External Humidification: Principles -- 4.4.6 External Humidification: Methods -- 4.5 Cooling and Air Supply -- 4.5.1 Cooling with Cathode Air Supply -- 4.5.2 Separate Reactant and Cooling Air -- 4.5.3 Water Cooling -- 4.6 Stack Construction Methods -- 4.6.1 Introduction -- 4.6.2 Carbon Bipolar Plates -- 4.6.3 Metal Bipolar Plates -- 4.6.4 Flow-Field Patterns -- 4.6.5 Other Topologies -- 4.6.6 Mixed Reactant Cells -- 4.7 Operating Pressure -- 4.7.1 Technical Issues -- 4.7.2 Benefits of High Operating Pressures -- 4.7.2.1 Current -- 4.7.3 Other Factors -- 4.8 Fuel Types -- 4.8.1 Reformed Hydrocarbons -- 4.8.2 Alcohols and Other Liquid Fuels -- 4.9 Practical and Commercial Systems -- 4.9.1 Small-Scale Systems -- 4.9.2 Medium-Scale for Stationary Applications -- 4.9.3 Transport System Applications -- 4.10 System Design, Stack Lifetime and Related Issues -- 4.10.1 Membrane Degradation -- 4.10.2 Catalyst Degradation -- 4.10.3 System Control -- 4.11 Unitized Regenerative Fuel Cells -- Further Reading -- Chapter 5 Alkaline Fuel Cells -- 5.1 Principles of Operation. , 5.2 System Designs -- 5.2.1 Circulating Electrolyte Solution -- 5.2.2 Static Electrolyte Solution -- 5.2.3 Dissolved Fuel -- 5.2.4 Anion-Exchange Membrane Fuel Cells -- 5.3 Electrodes -- 5.3.1 Sintered Nickel Powder -- 5.3.2 Raney Metals -- 5.3.3 Rolled Carbon -- 5.3.4 Catalysts -- 5.4 Stack Designs -- 5.4.1 Monopolar and Bipolar -- 5.4.2 Other Stack Designs -- 5.5 Operating Pressure and Temperature -- 5.6 Opportunities and Challenges -- Further Reading -- Chapter 6 Direct Liquid Fuel Cells -- 6.1 Direct Methanol Fuel Cells -- 6.1.1 Principles of Operation -- 6.1.2 Electrode Reactions with a Proton-Exchange Membrane Electrolyte -- 6.1.3 Electrode Reactions with an Alkaline Electrolyte -- 6.1.4 Anode Catalysts -- 6.1.5 Cathode Catalysts -- 6.1.6 System Designs -- 6.1.7 Fuel Crossover -- 6.1.8 Mitigating Fuel Crossover: Standard Techniques -- 6.1.9 Mitigating Fuel Crossover: Prospective Techniques -- 6.1.10 Methanol Production -- 6.1.11 Methanol Safety and Storage -- 6.2 Direct Ethanol Fuel Cells -- 6.2.1 Principles of Operation -- 6.2.2 Ethanol Oxidation, Catalyst and Reaction Mechanism -- 6.2.3 Low-Temperature Operation: Performance and Challenges -- 6.2.4 High-Temperature Direct Ethanol Fuel Cells -- 6.3 Direct Propanol Fuel Cells -- 6.4 Direct Ethylene Glycol Fuel Cells -- 6.4.1 Principles of Operation -- 6.4.2 Ethylene Glycol: Anodic Oxidation -- 6.4.3 Cell Performance -- 6.5 Formic Acid Fuel Cells -- 6.5.1 Formic Acid: Anodic Oxidation -- 6.5.2 Cell Performance -- 6.6 Borohydride Fuel Cells -- 6.6.1 Anode Catalysts -- 6.6.2 Challenges -- 6.7 Application of Direct Liquid Fuel Cells -- Further Reading -- Chapter 7 Phosphoric Acid Fuel Cells -- 7.1 High-Temperature Fuel-Cell Systems -- 7.2 System Design -- 7.2.1 Fuel Processing -- 7.2.2 Fuel Utilization -- 7.2.3 Heat-Exchangers -- 7.2.3.1 Designs -- 7.2.3.2 Exergy Analysis -- 7.2.3.3 Pinch Analysis. , 7.3 Principles of Operation -- 7.3.1 Electrolyte -- 7.3.2 Electrodes and Catalysts -- 7.3.3 Stack Construction -- 7.3.4 Stack Cooling and Manifolding -- 7.4 Performance -- 7.4.1 Operating Pressure -- 7.4.2 Operating Temperature -- 7.4.3 Effects of Fuel and Oxidant Composition -- 7.4.4 Effects of Carbon Monoxide and Sulfur -- 7.5 Technological Developments -- Further Reading -- Chapter 8 Molten Carbonate Fuel Cells -- 8.1 Principles of Operation -- 8.2 Cell Components -- 8.2.1 Electrolyte -- 8.2.2 Anode -- 8.2.3 Cathode -- 8.2.4 Non-Porous Components -- 8.3 Stack Configuration and Sealing -- 8.3.1 Manifolding -- 8.3.2 Internal and External Reforming -- 8.4 Performance -- 8.4.1 Influence of Pressure -- 8.4.2 Influence of Temperature -- 8.5 Practical Systems -- 8.5.1 Fuel Cell Energy (USA) -- 8.5.2 Fuel Cell Energy Solutions (Europe) -- 8.5.3 Facilities in Japan -- 8.5.4 Facilities in South Korea -- 8.6 Future Research and Development -- 8.7 Hydrogen Production and Carbon Dioxide Separation -- 8.8 Direct Carbon Fuel Cell -- Further Reading -- Chapter 9 Solid Oxide Fuel Cells -- 9.1 Principles of Operation -- 9.1.1 High-Temperature (HT) Cells -- 9.1.2 Low-Temperature (IT) Cells -- 9.2 Components -- 9.2.1 Zirconia Electrolyte for HT-Cells -- 9.2.2 Electrolytes for IT-Cells -- 9.2.2.1 Ceria -- 9.2.2.2 Perovskites -- 9.2.2.3 Other Materials -- 9.2.3 Anodes -- 9.2.3.1 Nickel-YSZ -- 9.2.3.2 Cathode -- 9.2.3.3 Mixed Ionic-Electronic Conductor Anode -- 9.2.4 Cathode -- 9.2.5 Interconnect Material -- 9.2.6 Sealing Materials -- 9.3 Practical Design and Stacking Arrangements -- 9.3.1 Tubular Design -- 9.3.2 Planar Design -- 9.4 Performance -- 9.5 Developmental and Commercial Systems -- 9.5.1 Tubular SOFCs -- 9.5.2 Planar SOFCs -- 9.6 Combined-Cycle and Other Systems -- Further Reading -- Chapter 10 Fuels for Fuel Cells -- 10.1 Introduction -- 10.2 Fossil Fuels. , 10.2.1 Petroleum -- 10.2.2 Petroleum from Tar Sands, Oil Shales and Gas Hydrates -- 10.2.3 Coal and Coal Gases -- 10.2.4 Natural Gas and Coal-Bed Methane (Coal-Seam Gas) -- 10.3 Biofuels -- 10.4 Basics of Fuel Processing -- 10.4.1 Fuel-Cell Requirements -- 10.4.2 Desulfurization -- 10.4.3 Steam Reforming -- 10.4.4 Carbon Formation and Pre-Reforming -- 10.4.5 Internal Reforming -- 10.4.5.1 Indirect Internal Reforming (IIR) -- 10.4.5.2 Direct Internal Reforming (DIR) -- 10.4.6 Direct Hydrocarbon Oxidation -- 10.4.7 Partial Oxidation and Autothermal Reforming -- 10.4.8 Solar-Thermal Reforming -- 10.4.9 Sorbent-Enhanced Reforming -- 10.4.10 Hydrogen Generation by Pyrolysis or Thermal Cracking of Hydrocarbons -- 10.4.11 Further Fuel Processing: Removal of Carbon Monoxide -- 10.5 Membrane Developments for Gas Separation -- 10.5.1 Non-Porous Metal Membranes -- 10.5.2 Non-Porous Ceramic Membranes -- 10.5.3 Porous Membranes -- 10.5.4 Oxygen Separation -- 10.6 Practical Fuel Processing: Stationary Applications -- 10.6.1 Industrial Steam Reforming -- 10.6.2 Fuel-Cell Plants Operating with Steam Reforming of Natural Gas -- 10.6.3 Reformer and Partial Oxidation Designs -- 10.6.3.1 Conventional Packed-Bed Catalytic Reactors -- 10.6.3.2 Compact Reformers -- 10.6.3.3 Plate Reformers and Microchannel Reformers -- 10.6.3.4 Membrane Reactors -- 10.6.3.5 Non-Catalytic Partial Oxidation Reactors -- 10.6.3.6 Catalytic Partial Oxidation Reactors -- 10.7 Practical Fuel Processing: Mobile Applications -- 10.8 Electrolysers -- 10.8.1 Operation of Electrolysers -- 10.8.2 Applications -- 10.8.3 Electrolyser Efficiency -- 10.8.4 Photoelectrochemical Cells -- 10.9 Thermochemical Hydrogen Production and Chemical Looping -- 10.9.1 Thermochemical Cycles -- 10.9.2 Chemical Looping -- 10.10 Biological Production of Hydrogen -- 10.10.1 Introduction.
    Weitere Ausg.: Print version: Dicks, Andrew. Fuel cell systems explained. Hoboken, NJ, USA : Wiley, [2018] ISBN 9781118613528
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Buch
    Buch
    Berlin [u.a.] :Duden-Schulbuchverl.,
    UID:
    almahu_BV025583366
    Umfang: 575 S. : , Ill., graph. Darst., Kt. , 1 DVD-ROM
    Ausgabe: 1. Aufl., 1. Dr.
    ISBN: 978-3-8355-6506-7
    Serie: Deutsch aktiv
    Anmerkung: Systemvoraussetzungen der DVD-ROM-Beil.: PC-Prozessor ab 800 MHz, Mac-Prozessor ab G4 (empfohlen ab G5); Windows ab XP; Mac OS X ab Version 10.4.11 (empfohlen ab 10.5); Adobe Reader ab Version 9, Adobe Flash Player ab Version 10; Internetbrowser
    Sprache: Deutsch
    Fachgebiete: Germanistik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Deutschunterricht ; Gymnasium ; Oberstufe ; Lehrmittel
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    b3kat_BV036539979
    Umfang: 263 S. , Ill., graph. Darst. , 1 CD-ROM (12 cm)
    Ausgabe: Aktualisierte Aufl., 1. Aufl.
    ISBN: 9783191615758
    Anmerkung: Hier auch später erschienene, unveränderte Nachdrucke , laut Verlag lässt sich die beiliegende CD auf Grund technischer Probleme bei Adobe nicht mehr installieren. Der Verlag stellt die betroffenen Programme alternativ als Download zur Verfügung. Informationen dazu sind zu finden unter https://go.hueber.de/aktuell , Windows: Intel-Prozessor der Pentium-II-Klasse mit mind 1 GHz oder höher, 512 MB RAM; empfohlen Pentium 4, 2 GHz oder höher, 1 GB RAM. - Windows 7, Windows Vista Home Premium, Business, Ultimate oder Enterprise (einschl. 64-Bit-Versionen), Windows Vista mit Service pack 1, Windows XP Tablet PC Edition mit Service Pack 2 oder 3, Windows XP mit Service Pack 2 oder 3, Windows 2000 mit Service Pack 4, Windows Server 2003 , Mac OS X: Intel core Duo-Prozessor mit mind. 1,83 GHz; Power-PC-Prozessor G4 mit mind. 1 GHz. - 512 MB RAM. - Mac OS X Version ab 10.4.11
    In: 1
    Sprache: Deutsch
    Fachgebiete: Germanistik
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    UID:
    kobvindex_ERBEBC6947764
    Umfang: 1 online resource (402 pages)
    Ausgabe: 2
    ISBN: 9783958459397
    Anmerkung: Cover -- Titel -- Impressum -- Inhaltsverzeichnis -- Vorwort -- Über die Autoren -- Einleitung -- Wer sollte dieses Buch lesen? -- Warum überhaupt dieses Buch lesen? -- Aufbau des Buchs -- Konventionen dieses Buchs -- Danksagungen -- Kapitel 1: Einführung -- 1.1 Die Entstehung von Docker -- 1.2 Das Docker-Versprechen -- 1.2.1 Vorteile des Docker-Workflows -- 1.3 Was Docker nicht ist -- 1.4 Wichtige Begrifflichkeiten -- 1.5 Zusammenfassung -- Kapitel 2: Docker im Überblick -- 2.1 Workflows vereinfachen -- 2.2 Umfassender Support und breite Akzeptanz -- 2.3 Architektur -- 2.3.1 Das Client-Server-Modell -- 2.3.2 Netzwerk-Ports und Unix-Sockets -- 2.3.3 Stabiles Tooling -- 2.3.4 Dockers Kommandozeilentool -- 2.3.5 Docker-Engine-API -- 2.3.6 Container-Netzwerk -- 2.4 Docker ausreizen -- 2.4.1 Container sind keine virtuellen Maschinen -- 2.4.2 Beschränkte Isolierung -- 2.4.3 Container sind leichtgewichtig -- 2.4.4 Unveränderliche Infrastruktur -- 2.4.5 Zustandslose Anwendungen -- 2.4.6 Zustände externalisieren -- 2.5 Der Docker-Workflow -- 2.5.1 Versionsverwaltung -- 2.5.2 Anwendungen erstellen -- 2.5.3 Testen -- 2.5.4 Paketierung -- 2.5.5 Deployment -- 2.5.6 Das Docker-Ökosystem -- 2.6 Zusammenfassung -- Kapitel 3: Docker installieren -- 3.1 Der Docker-Client -- 3.1.1 Linux -- 3.1.2 macOS -- 3.1.3 Microsoft Windows 10 Professional -- 3.2 Der Docker-Server -- 3.2.1 Linux mit systemd -- 3.2.2 Server, die nicht auf Linux-VMs basieren -- 3.3 Installation testen -- 3.3.1 Ubuntu -- 3.3.2 Fedora -- 3.3.3 Alpine Linux -- 3.4 Docker-Server erkunden -- 3.5 Zusammenfassung -- Kapitel 4: Docker-Images verwenden -- 4.1 Der Aufbau eines Dockerfiles -- 4.2 Erstellen eines Images -- 4.3 Fehlerbehebung bei fehlgeschlagenen Builds -- 4.4 Ausführen eines Images -- 4.4.1 Umgebungsvariablen -- 4.5 Benutzerdefinierte Base-Images -- 4.6 Images speichern , 4.6.1 Öffentliche Registries -- 4.6.2 Private Registries -- 4.6.3 Authentifizierung -- 4.6.4 Eine private Registry betreiben -- 4.6.5 Fortgeschrittene Build-Techniken -- 4.7 So geht es weiter -- Kapitel 5: Docker-Container verwenden -- 5.1 Was sind Container? -- 5.1.1 Die Entstehungsgeschichte der Container -- 5.2 Container erstellen -- 5.2.1 Grundlegende Konfiguration -- 5.2.2 Speichervolumes -- 5.2.3 Ressourcen-Quotas -- 5.3 Container starten -- 5.4 Container automatisch neu starten -- 5.5 Container stoppen -- 5.6 Container sofort beenden -- 5.7 Ausführung eines Containers pausieren und fortsetzen -- 5.8 Container und Images aufräumen -- 5.9 Windows-Container -- 5.10 So geht es weiter -- Kapitel 6: Docker erkunden -- 6.1 Ausgabe der Docker-Version -- 6.2 Informationen über den Server -- 6.3 Image-Updates herunterladen -- 6.4 Container inspizieren -- 6.5 Die Shell erkunden -- 6.6 Ausgabe von Rückgabewerten -- 6.7 In einen laufenden Container gelangen -- 6.7.1 docker exec -- 6.7.2 nsenter -- 6.7.3 docker volume -- 6.8 Logging -- 6.8.1 docker logs -- 6.8.2 Fortgeschrittenes Logging -- 6.8.3 Non-Plug-in-Community-Optionen -- 6.9 Docker überwachen -- 6.9.1 Containerstatistiken -- 6.9.2 Stats-API-Endpunkt -- 6.9.3 Container-Health-Checks -- 6.9.4 Docker-Events -- 6.9.5 cAdvisor -- 6.10 Monitoring mit Prometheus -- 6.11 Weitere Erkundung -- 6.12 So geht es weiter -- Kapitel 7: Container debuggen -- 7.1 Prozesse anzeigen -- 7.2 Prozesse inspizieren -- 7.3 Prozessverwaltung -- 7.4 Das Netzwerk inspizieren -- 7.5 Image-History -- 7.6 Inspizieren eines Containers -- 7.7 Dateisystem inspizieren -- 7.8 So geht es weiter -- Kapitel 8: Docker Compose -- 8.1 Docker Compose konfigurieren -- 8.2 Services starten -- 8.3 RocketChat -- 8.4 Weitere Features von Docker Compose -- 8.5 So geht es weiter -- Kapitel 9: Der Weg zu Containern in Produktivumgebungen , 9.1 Einstieg in die Produktion -- 9.2 Dockers Rolle in Produktivumgebungen -- 9.2.1 Beschränkung der Ressourcen -- 9.2.2 Netzwerke -- 9.2.3 Konfiguration -- 9.2.4 Paketierung und Auslieferung -- 9.2.5 Logging -- 9.2.6 Monitoring -- 9.2.7 Scheduling -- 9.2.8 Service Discovery -- 9.2.9 Fazit zur Produktion -- 9.3 Docker und die DevOps-Pipeline -- 9.3.1 Kurzübersicht -- 9.3.2 Externe Abhängigkeiten -- 9.4 So geht es weiter -- Kapitel 10: Skalierung -- 10.1 Centurion -- 10.2 Docker Swarm Mode -- 10.3 Amazon ECS und Fargate -- 10.3.1 Einrichten von AWS -- 10.3.2 Einrichtung von IAM-Rollen -- 10.3.3 Einrichtung der AWS-CLI-Tools -- 10.3.4 Container-Instanzen -- 10.3.5 Tasks -- 10.3.6 Testen des Tasks -- 10.3.7 Task stoppen -- 10.4 Kubernetes -- 10.4.1 Was ist Minikube? -- 10.4.2 Minikube installieren -- 10.4.3 Kubernetes zum Laufen bringen -- 10.4.4 Kubernetes-Dashboard -- 10.4.5 Kubernetes-Container und Pods -- 10.4.6 Das erste Deployment -- 10.4.7 Deployment eines realistischen Stacks -- 10.4.8 Service-Definition -- 10.4.9 Definition des PersistentVolumeClaim -- 10.4.10 Deployment-Definition -- 10.4.11 Die Anwendung deployen -- 10.4.12 Hochskalierung -- 10.4.13 kubectl-API -- 10.5 Zusammenfassung -- Kapitel 11: Weiterführende Themen -- 11.1 Container im Detail -- 11.1.1 Control Groups (cgroups) -- 11.1.2 Kernel- und Benutzer-Namespaces -- 11.2 Sicherheitsaspekte -- 11.2.1 SELinux und AppArmor -- 11.2.2 Wie sicher ist der Docker-Daemon? -- 11.3 Erweiterte Konfiguration -- 11.3.1 Netzwerke -- 11.4 Storage -- 11.5 Die Struktur von Docker -- 11.6 Runtimes austauschen -- 11.6.1 Clear-Container/Kata-Container -- 11.6.2 gVisor -- 11.7 Zusammenfassung -- Kapitel 12: Container in der Produktivumgebung -- 12.1 »The Twelve-Factor App«-Manifest -- 12.1.1 Codebasis -- 12.1.2 Abhängigkeiten -- 12.1.3 Konfiguration -- 12.1.4 Unterstützende Services , 12.1.5 Build, Release und Ausführung -- 12.1.6 Prozesse -- 12.1.7 Portanbindung -- 12.1.8 Nebenläufigkeit -- 12.1.9 Austauschbarkeit -- 12.1.10 Gleichstellung von Entwicklungs- und Produktivumgebung -- 12.1.11 Logs -- 12.1.12 Administrationsprozesse -- 12.1.13 »Twelve-Factor«-Zusammenfassung -- 12.2 The Reactive Manifesto -- 12.2.1 Reaktionsschnell -- 12.2.2 Belastbar -- 12.2.3 Flexibel -- 12.2.4 Nachrichtengesteuert -- 12.3 Zusammenfassung -- Kapitel 13: Schlusswort -- 13.1 Herausforderungen -- 13.2 Der Docker-Workflow -- 13.3 Minimierung der Deployment-Artefakte -- 13.4 Speicherung und Abruf optimieren -- 13.5 Der Lohn der Mühe -- 13.6 Zu guter Letzt -- Stichwortverzeichnis
    Weitere Ausg.: Print version: Matthias, Karl Docker Praxiseinstieg Frechen : mitp,c2020
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Freiburg :Haufe Lexware Verlag,
    UID:
    edocfu_9961000057402883
    Umfang: 1 online resource (578 pages)
    ISBN: 3-648-15130-4
    Serie: Haufe Fachbuch
    Anmerkung: Cover -- Hinweis zum Urheberrecht -- Titel -- Impressum -- Inhaltsverzeichnis -- Vorwort -- 1 Unternehmen und Organisationen in der Wertegesellschaft -- 1.1 Trends -- 1.2 Organisationskultur -- 2 New Work - die Zukunft ist ungewiss -- 2.1 Disruption -- 2.2 New Work heute -- 2.3 Megatrend New Work - zukunftsweisend und sinnstiftend -- 2.4 Agiles Handeln in der Welt des New Work -- 2.4.1 Das agile Manifest -- 2.4.2 Agilität in der Organisation -- 2.4.3 Agiles Handeln -- 2.4.4 Das agile Mindset -- 2.4.5 Selbstorganisiertes Handeln -- 2.5 Digitale Zusammenarbeit -- 2.6 Arbeitsplatz der Zukunft - Digital Workspace -- 3 Future Learning - selbstorganisierte Werte- und Kompetenzentwicklung -- 3.1 Future Learning für eine ungewisse Zukunft -- 3.2 Future Learning in einer neuen Arbeitswelt -- 3.3 Ziele des Future Learning - Werte und Kompetenzen -- 3.4 Future Learning: Arbeiten und Lernen wachsen zusammen -- 3.5 Didaktik für Future Learning -- 3.5.1 Neurodidaktik -- 3.5.2 Lerntheorien und zukünftiges Lernen -- 3.5.3 Lernpsychologie -- 3.5.4 Ermöglichungsdidaktik - die konzeptionelle Basis -- 3.5.5 Singularitätsdidaktik -- 3.6 Ermöglichungsraum - Learning-Experience-Plattform (LXP) -- 3.6.1 Lern-Ökosystem - Learning-Experience-Plattform (LXP) -- 3.6.2 Digitale Lernwerkzeuge -- 3.7 Wissensaufbau in der Zukunft -- 3.7.1 Formelles E-Learning -- 3.7.2 Informelles E-Learning - Microlearning on demand -- 3.8 Qualifizierung in der Zukunft -- 3.9 Entwicklungsarrangements für Werte und Kompetenzen -- 3.9.1 Werte- und Kompetenzentwicklung in der Praxis und in Projekten -- 3.9.2 Begleitendes Coaching -- 3.9.3 Ergänzung der Werte- und Kompetenzentwicklung im Training -- 3.9.4 Unterstützung der Werte- und Kompetenzentwicklung in der Weiterbildung -- 3.9.5 Social Blended Learning -- 3.10 Social Workplace Learning. , 3.11 KOPING - Steuerung und Flankierung der Lernprozesse -- 3.11.1 KOPING-Konzept -- 3.11.2 Lernbegleiter -- 4 Werte- und Kompetenzmodelle - die Basis gezielter Entwicklung -- 4.1 Wertemodelle -- 4.2 Kompetenzmodelle -- 5 Erfassung, Analyse und Bewertung von Werten und Kompetenzen -- 5.1 Werteerfassung -- 5.1.1 Werteerfassung auf der Organisationsebene -- 5.1.2 Werteerfassung auf der Teamebene -- 5.1.3 Werteerfassung auf der individuellen Ebene - Ratingmethode -- 5.1.4 Werteerfassung auf der individuellen Ebene - Rankingmethode -- 5.1.5 Anforderungen an die Werteerfassung -- 5.2 Kompetenzerfassung -- 5.2.1 Kompetenzerfassung auf Organisationsebene -- 5.2.2 Kompetenzerfassung auf Teamebene -- 5.2.3 Kompetenzerfassung auf individueller Ebene - Ratingmethode -- 5.2.4 Kompetenzerfassung auf individueller Ebene - Rankingmethode -- 5.2.5 Anforderungen an die Kompetenzerfassung -- 5.3 Qualitätskriterien -- 6 Gezieltes Werte- und Kompetenzmanagement -- 6.1 Werte- und Kompetenzmanagement auf Organisationsebene -- 6.1.1 Obere Führung - organisationale Werte- und Kompetenzmanager -- 6.1.2 Werte- und Kompetenzmanagementteam -- 6.1.3 Unternehmensweiter Kommunikationsprozess -- 6.1.4 Lernende Netzwerke am Beispiel »Kultur der Nachhaltigkeit« -- 6.1.5 Prozess der organisationalen Werte- und Kompetenzentwicklung -- 6.1.6 Praxisbeispiel: Korridorthema »werteorientierte Compliance« -- 6.1.7 Praxisbeispiel: Werteorientiertes Marketing -- 6.1.8 Praxisbeispiel: Employer Branding -- 6.2 Werte- und Kompetenzmanagement auf Teamebene -- 6.2.1 Die Führungskraft - teambezogener Werte- und Kompetenzmanager -- 6.2.2 Prozess der teambezogenen Werte- und Kompetenzentwicklung -- 6.2.3 Führungskräftefeedback und Management der Führungskultur -- 6.2.4 Praxisbeispiel: Konfliktmanagement -- 6.3 Individuelle Werte- und Kompetenzentwicklung. , 6.3.1 Praxisbeispiel: Beratung von Nachwuchskräften -- 6.3.2 Praxisbeispiel: Recruiting -- 6.3.3 Werte- und kompetenzorientierte Berufsausbildung -- 6.3.4 Praxisbeispiel: Werteorientiertes und kulturgerechtes Onboarding -- 6.3.5 Aufbau von Fachkompetenzen -- 6.3.6 Praxisbeispiel: Talentmanagement -- 6.3.7 Praxisbeispiel: Aufbau von Führungskompetenzen -- 6.3.8 Praxisbeispiel: Karriereberatung -- 6.3.9 Praxisbeispiel: Retention Management -- 6.3.10 Praxisbeispiel: Outplacement (Newplacement) -- 6.4 Gezielte Werte- und Kompetenzentwicklung im Überblick -- 6.5 Validierung -- 6.6 Anforderungen an die gezielte Werte- und Kompetenzentwicklung von Mitarbeitern -- 7 Geschäftsmodell des Future Learning -- 7.1 Das Ende der Personalentwicklung -- 7.2 Neue Rollen im Corporate Learning -- 7.3 Strategieorientiertes Werte- und Kompetenzmanagement -- 7.4 Werte- und Kompetenzentwicklung der Learning Professionals -- 7.4.1 Lernbegleitung -- 7.4.2 Ziele und Anforderungen -- 7.4.3 Werte- und Kompetenzentwicklungsprozesse im Doppel-Decker -- 8 Veränderungsprozess hin zu Future Learning -- 8.1 Entwicklungsprozess -- 8.2 Handlungsfelder -- 8.3 Praxisbeispiel: Beispiel eines Einführungsprozesses für Future Learning -- 8.4 Zusammenfassung der Anforderungen -- 9 Die Zukunft der Zukunft -- 9.1 New Work -- 9.2 Future Learning -- 9.2.1 Werte, Kompetenzen und Disruption -- 9.2.2 Agilität -- 9.2.3 Digitale Transformation -- 9.2.4 Methoden der gezielten Werte- und Kompetenzentwicklung -- 9.2.5 Werteentwicklung -- 10 Toolbox: gezielte Entwicklung der Werte und Kompetenzen von Mitarbeitern -- 10.1 Grundlegende Entwicklungsempfehlungen -- 10.2 Agile Lernprinzipien -- 10.3 Entwicklungsmethoden für Werte und Kompetenzen -- 10.4 Basis: Entwicklung in Praxisaufgaben und -projekten -- 10.4.1 Agile Methoden -- 10.4.2 Jobrotation -- 10.4.3 Qualitätszirkel -- 10.4.4 Making Methode. , 10.4.5 Seitenwechsel® -- 10.4.6 Wissensmanagement -- 10.4.7 Lernallianzen -- 10.4.8 WOL - Working Out Loud -- 10.4.9 Communities of Practice -- 10.4.10 Supervision -- 10.4.11 Aufbau mentaler Stärke -- 10.5 Begleitendes Mentoring und Coaching -- 10.5.1 Mentoring -- 10.5.2 Coaching -- 10.5.3 Kollegiales Coaching -- 10.5.4 Co-Coaching -- 10.5.5 Kollegiale Beratung -- 10.6 Ergänzende Trainings -- 10.6.1 Realitätsgleiche Herausforderungen -- 10.6.2 Realitätsähnliche Herausforderungen -- 10.6.3 Realitätsnahe Herausforderungen -- 10.6.4 Analysemethoden -- 10.7 Unterstützende Weiterbildungsmaßnahmen -- 11 Entwicklungsempfehlungen für Einzelwerte -- 11.1 Kreativität -- 11.2 Gesundheit -- 11.3 Bildung -- 11.4 Individuelle Freiheit -- 11.5 Lebensstandard -- 11.6 Sicherheit -- 11.7 Anerkennung -- 11.8 Gemeinnutz -- 11.9 Privatleben -- 11.10 Ideale -- 11.11 Verantwortung -- 11.12 Respekt -- 11.13 Beziehungen -- 11.14 Einfluss -- 11.15 Norm und Gesetz -- 11.16 Netzwerk -- 12 Entwicklungsempfehlungen für Einzelkompetenzen -- 12.1 Eigenverantwortliches Handeln -- 12.2 Selbstorganisiertes Handeln -- 12.3 Förderndes Handeln -- 12.4 Ganzheitliches Handeln -- 12.5 Entscheidungsorientiertes Handeln -- 12.6 Tatkräftiges Handeln -- 12.7 Impulsgebendes Handeln -- 12.8 Konsequentes Handeln -- 12.9 Teamorientiertes Handeln -- 12.10 Problemlösendes Handeln -- 12.11 Kollaboratives Handeln -- 12.12 Gewissenhaftes Handeln -- 12.13 Erfahrungsorientiertes Handeln -- 12.14 Systematisch-methodisches Handeln -- 12.15 Entwicklungsorientiertes Handeln -- 12.16 Handeln mit Expertise -- Glossar -- Literatur -- Stichwortverzeichnis -- Autoren.
    Sprache: Deutsch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Freiburg :Haufe Lexware Verlag,
    UID:
    edoccha_9961000057402883
    Umfang: 1 online resource (578 pages)
    ISBN: 3-648-15130-4
    Serie: Haufe Fachbuch
    Anmerkung: Cover -- Hinweis zum Urheberrecht -- Titel -- Impressum -- Inhaltsverzeichnis -- Vorwort -- 1 Unternehmen und Organisationen in der Wertegesellschaft -- 1.1 Trends -- 1.2 Organisationskultur -- 2 New Work - die Zukunft ist ungewiss -- 2.1 Disruption -- 2.2 New Work heute -- 2.3 Megatrend New Work - zukunftsweisend und sinnstiftend -- 2.4 Agiles Handeln in der Welt des New Work -- 2.4.1 Das agile Manifest -- 2.4.2 Agilität in der Organisation -- 2.4.3 Agiles Handeln -- 2.4.4 Das agile Mindset -- 2.4.5 Selbstorganisiertes Handeln -- 2.5 Digitale Zusammenarbeit -- 2.6 Arbeitsplatz der Zukunft - Digital Workspace -- 3 Future Learning - selbstorganisierte Werte- und Kompetenzentwicklung -- 3.1 Future Learning für eine ungewisse Zukunft -- 3.2 Future Learning in einer neuen Arbeitswelt -- 3.3 Ziele des Future Learning - Werte und Kompetenzen -- 3.4 Future Learning: Arbeiten und Lernen wachsen zusammen -- 3.5 Didaktik für Future Learning -- 3.5.1 Neurodidaktik -- 3.5.2 Lerntheorien und zukünftiges Lernen -- 3.5.3 Lernpsychologie -- 3.5.4 Ermöglichungsdidaktik - die konzeptionelle Basis -- 3.5.5 Singularitätsdidaktik -- 3.6 Ermöglichungsraum - Learning-Experience-Plattform (LXP) -- 3.6.1 Lern-Ökosystem - Learning-Experience-Plattform (LXP) -- 3.6.2 Digitale Lernwerkzeuge -- 3.7 Wissensaufbau in der Zukunft -- 3.7.1 Formelles E-Learning -- 3.7.2 Informelles E-Learning - Microlearning on demand -- 3.8 Qualifizierung in der Zukunft -- 3.9 Entwicklungsarrangements für Werte und Kompetenzen -- 3.9.1 Werte- und Kompetenzentwicklung in der Praxis und in Projekten -- 3.9.2 Begleitendes Coaching -- 3.9.3 Ergänzung der Werte- und Kompetenzentwicklung im Training -- 3.9.4 Unterstützung der Werte- und Kompetenzentwicklung in der Weiterbildung -- 3.9.5 Social Blended Learning -- 3.10 Social Workplace Learning. , 3.11 KOPING - Steuerung und Flankierung der Lernprozesse -- 3.11.1 KOPING-Konzept -- 3.11.2 Lernbegleiter -- 4 Werte- und Kompetenzmodelle - die Basis gezielter Entwicklung -- 4.1 Wertemodelle -- 4.2 Kompetenzmodelle -- 5 Erfassung, Analyse und Bewertung von Werten und Kompetenzen -- 5.1 Werteerfassung -- 5.1.1 Werteerfassung auf der Organisationsebene -- 5.1.2 Werteerfassung auf der Teamebene -- 5.1.3 Werteerfassung auf der individuellen Ebene - Ratingmethode -- 5.1.4 Werteerfassung auf der individuellen Ebene - Rankingmethode -- 5.1.5 Anforderungen an die Werteerfassung -- 5.2 Kompetenzerfassung -- 5.2.1 Kompetenzerfassung auf Organisationsebene -- 5.2.2 Kompetenzerfassung auf Teamebene -- 5.2.3 Kompetenzerfassung auf individueller Ebene - Ratingmethode -- 5.2.4 Kompetenzerfassung auf individueller Ebene - Rankingmethode -- 5.2.5 Anforderungen an die Kompetenzerfassung -- 5.3 Qualitätskriterien -- 6 Gezieltes Werte- und Kompetenzmanagement -- 6.1 Werte- und Kompetenzmanagement auf Organisationsebene -- 6.1.1 Obere Führung - organisationale Werte- und Kompetenzmanager -- 6.1.2 Werte- und Kompetenzmanagementteam -- 6.1.3 Unternehmensweiter Kommunikationsprozess -- 6.1.4 Lernende Netzwerke am Beispiel »Kultur der Nachhaltigkeit« -- 6.1.5 Prozess der organisationalen Werte- und Kompetenzentwicklung -- 6.1.6 Praxisbeispiel: Korridorthema »werteorientierte Compliance« -- 6.1.7 Praxisbeispiel: Werteorientiertes Marketing -- 6.1.8 Praxisbeispiel: Employer Branding -- 6.2 Werte- und Kompetenzmanagement auf Teamebene -- 6.2.1 Die Führungskraft - teambezogener Werte- und Kompetenzmanager -- 6.2.2 Prozess der teambezogenen Werte- und Kompetenzentwicklung -- 6.2.3 Führungskräftefeedback und Management der Führungskultur -- 6.2.4 Praxisbeispiel: Konfliktmanagement -- 6.3 Individuelle Werte- und Kompetenzentwicklung. , 6.3.1 Praxisbeispiel: Beratung von Nachwuchskräften -- 6.3.2 Praxisbeispiel: Recruiting -- 6.3.3 Werte- und kompetenzorientierte Berufsausbildung -- 6.3.4 Praxisbeispiel: Werteorientiertes und kulturgerechtes Onboarding -- 6.3.5 Aufbau von Fachkompetenzen -- 6.3.6 Praxisbeispiel: Talentmanagement -- 6.3.7 Praxisbeispiel: Aufbau von Führungskompetenzen -- 6.3.8 Praxisbeispiel: Karriereberatung -- 6.3.9 Praxisbeispiel: Retention Management -- 6.3.10 Praxisbeispiel: Outplacement (Newplacement) -- 6.4 Gezielte Werte- und Kompetenzentwicklung im Überblick -- 6.5 Validierung -- 6.6 Anforderungen an die gezielte Werte- und Kompetenzentwicklung von Mitarbeitern -- 7 Geschäftsmodell des Future Learning -- 7.1 Das Ende der Personalentwicklung -- 7.2 Neue Rollen im Corporate Learning -- 7.3 Strategieorientiertes Werte- und Kompetenzmanagement -- 7.4 Werte- und Kompetenzentwicklung der Learning Professionals -- 7.4.1 Lernbegleitung -- 7.4.2 Ziele und Anforderungen -- 7.4.3 Werte- und Kompetenzentwicklungsprozesse im Doppel-Decker -- 8 Veränderungsprozess hin zu Future Learning -- 8.1 Entwicklungsprozess -- 8.2 Handlungsfelder -- 8.3 Praxisbeispiel: Beispiel eines Einführungsprozesses für Future Learning -- 8.4 Zusammenfassung der Anforderungen -- 9 Die Zukunft der Zukunft -- 9.1 New Work -- 9.2 Future Learning -- 9.2.1 Werte, Kompetenzen und Disruption -- 9.2.2 Agilität -- 9.2.3 Digitale Transformation -- 9.2.4 Methoden der gezielten Werte- und Kompetenzentwicklung -- 9.2.5 Werteentwicklung -- 10 Toolbox: gezielte Entwicklung der Werte und Kompetenzen von Mitarbeitern -- 10.1 Grundlegende Entwicklungsempfehlungen -- 10.2 Agile Lernprinzipien -- 10.3 Entwicklungsmethoden für Werte und Kompetenzen -- 10.4 Basis: Entwicklung in Praxisaufgaben und -projekten -- 10.4.1 Agile Methoden -- 10.4.2 Jobrotation -- 10.4.3 Qualitätszirkel -- 10.4.4 Making Methode. , 10.4.5 Seitenwechsel® -- 10.4.6 Wissensmanagement -- 10.4.7 Lernallianzen -- 10.4.8 WOL - Working Out Loud -- 10.4.9 Communities of Practice -- 10.4.10 Supervision -- 10.4.11 Aufbau mentaler Stärke -- 10.5 Begleitendes Mentoring und Coaching -- 10.5.1 Mentoring -- 10.5.2 Coaching -- 10.5.3 Kollegiales Coaching -- 10.5.4 Co-Coaching -- 10.5.5 Kollegiale Beratung -- 10.6 Ergänzende Trainings -- 10.6.1 Realitätsgleiche Herausforderungen -- 10.6.2 Realitätsähnliche Herausforderungen -- 10.6.3 Realitätsnahe Herausforderungen -- 10.6.4 Analysemethoden -- 10.7 Unterstützende Weiterbildungsmaßnahmen -- 11 Entwicklungsempfehlungen für Einzelwerte -- 11.1 Kreativität -- 11.2 Gesundheit -- 11.3 Bildung -- 11.4 Individuelle Freiheit -- 11.5 Lebensstandard -- 11.6 Sicherheit -- 11.7 Anerkennung -- 11.8 Gemeinnutz -- 11.9 Privatleben -- 11.10 Ideale -- 11.11 Verantwortung -- 11.12 Respekt -- 11.13 Beziehungen -- 11.14 Einfluss -- 11.15 Norm und Gesetz -- 11.16 Netzwerk -- 12 Entwicklungsempfehlungen für Einzelkompetenzen -- 12.1 Eigenverantwortliches Handeln -- 12.2 Selbstorganisiertes Handeln -- 12.3 Förderndes Handeln -- 12.4 Ganzheitliches Handeln -- 12.5 Entscheidungsorientiertes Handeln -- 12.6 Tatkräftiges Handeln -- 12.7 Impulsgebendes Handeln -- 12.8 Konsequentes Handeln -- 12.9 Teamorientiertes Handeln -- 12.10 Problemlösendes Handeln -- 12.11 Kollaboratives Handeln -- 12.12 Gewissenhaftes Handeln -- 12.13 Erfahrungsorientiertes Handeln -- 12.14 Systematisch-methodisches Handeln -- 12.15 Entwicklungsorientiertes Handeln -- 12.16 Handeln mit Expertise -- Glossar -- Literatur -- Stichwortverzeichnis -- Autoren.
    Sprache: Deutsch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    edoccha_9961527717902883
    Umfang: 1 online resource (294 pages)
    Ausgabe: 1st ed.
    ISBN: 0-323-95302-6
    Anmerkung: Front Cover -- Mechanoluminescence in Organic and Inorganic Compounds -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Luminescence: types and mechanism -- 1.1 Introduction -- 1.2 Characteristics and classification of luminescence -- 1.3 Mechanism of luminescence -- References -- 2 Advancements in instrumental setups for investigating mechanoluminescence -- 2.1 Introduction -- 2.1.1 Fractoluminescence -- 2.1.2 Triboluminescence -- 2.1.3 Elasticoluminescence -- 2.1.4 Plastico-mechanoluminescence -- 2.1.5 Piezoluminescence -- 2.1.6 Electrochemiluminescence -- 2.1.7 Sonoluminescence -- 2.2 Examples of mechanoluminescence materials and applications -- 2.3 Experimental techniques -- 2.3.1 Experimental setup of impulsive technique -- 2.4 Experimental setup of compression and tensile testing technique -- 2.5 Compression testing -- 2.6 Tensile testing -- 2.7 Experimental setup of bending and flexing technique -- 2.8 Bending technique -- 2.9 Flexing technique -- 2.10 Experimental setup of fracture or crack-induced technique -- 2.11 Experimental setup of tribological technique -- 2.12 Laboratory apparatus used to measure triboluminescence -- 2.13 Laboratory apparatus used to measure fractoluminescence -- 2.14 Laboratory apparatus used to measure the lastic-mechanoluminescence -- 2.15 Laboratory apparatus used to measure the plastico-mechanoluminescence -- 2.16 Mechanoluminescent materials -- 2.17 Conclusions -- Acknowledgments -- References -- 3 Synthesis of organic and inorganic mechanoluminescent compounds -- 3.1 Introduction -- 3.2 Synthesis methodologies -- 3.2.1 Solid-state reaction method -- 3.2.2 Sol-gel synthesis method -- 3.2.3 Microwave-assisted method -- 3.2.3.1 Quaternary oxysulfide -- 3.2.3.2 Niobates and stannates -- 3.2.4 Mechanoluminescent inorganic materials. , 3.2.5 Mechanoluminescence of organic materials -- 3.3 Conclusions -- References -- 4 Impact of doping on mechanoluminescence -- 4.1 Introduction -- 4.2 Difference between triboluminescence and mechanoluminescence -- 4.3 Representation of ML phosphor -- 4.4 Dependence of mechanoluminescence on crystal structures -- 4.5 Mechanism of mechanoluminescence -- 4.6 Impact of doping on mechanoluminescence -- 4.6.1 Effect of doped ions on mechanoluminescence spectra -- 4.6.2 Effect of doping rare earth metal ions on mechanoluminescence -- 4.6.3 Different host materials and their mechanoluminescence properties on doping -- 4.6.3.1 Mechanoluminescence in halides -- 4.6.3.2 Mechanoluminescence in sulfides -- 4.6.3.3 Mechanoluminescence in oxysulfides -- 4.6.3.4 Mechanoluminescence in oxides -- 4.7 Conclusion -- References -- 5 Mechanoluminescence for display devices -- 5.1 Introduction -- 5.2 ML materials for display applications -- 5.2.1 Inorganic ML materials -- 5.2.2 Organic materials -- 5.2.3 Polymer composites -- 5.2.4 Biological materials -- 5.3 Origin of ML -- 5.4 Methodology -- 5.5 Outlook -- References -- 6 Mechanoluminescence for infrastructure, health, and safety applications -- 6.1 Introduction -- 6.2 Mechanism of mechanoluminescence -- 6.2.1 Elastico-mechanoluminescence based on the electrostatic interaction at dislocations -- 6.2.2 Elastico-mechanoluminescence based on electron detrapping caused by piezoelectricity -- 6.3 Mechanoluminescent materials -- 6.4 Mechanoluminescence for infrastructure, health, and protection -- 6.4.1 Mechanoluminescence applications in buildings and other structures -- 6.4.2 Mechanoluminescence for health -- 6.4.2.1 Biomimetic multifunctional E-skins integrated with mechanoluminescence -- 6.4.3 Mechanoluminescence for safety applications -- 6.5 Future prospects and conclusion -- References. , 7 Mechanoluminescence in anticounterfeiting -- 7.1 Introduction -- 7.2 Mechanoluminescence: mechanisms and experimental methodology -- 7.2.1 Mechanism of mechanoluminescence -- 7.2.2 Experimental methodology -- 7.3 Factors affecting mechanoluminescence -- 7.4 Triboluminescence and its applications in anticounterfeiting technology -- 7.4.1 Comparison of triboluminescence and piezoluminescence in terms of their mechanoluminescence efficiency and sensitivity -- 7.4.1.1 Sensitivity -- 7.5 Materials for mechanoluminescence-based anticounterfeiting -- 7.5.1 Zinc sulfide -- 7.5.2 Zinc oxide -- 7.5.3 Strontium aluminate -- 7.5.3.1 Advantages -- 7.5.4 Barium aluminate -- 7.6 Advances in mechanoluminescence materials -- 7.6.1 Metal-organic frameworks -- 7.6.2 Organic materials -- 7.6.3 Inorganic materials -- 7.6.4 Hybrid materials -- 7.7 Applications of mechanoluminescence in anticounterfeiting -- 7.7.1 Currency authentication -- 7.7.2 Secure packaging -- 7.7.3 Product authentication -- 7.7.4 Document security -- 7.8 Challenges and future directions -- 7.9 Conclusion -- References -- 8 Mechanoluminescence for electronic skins and wearable devices -- 8.1 Introduction -- 8.2 Displays and sensors in electronic skins and wearable devices -- 8.2.1 Technical requirements in wearable devices -- 8.2.1.1 Flexibility and stretchability -- 8.2.1.2 Spatial resolution -- 8.2.1.3 Energy-saving or self-powering feature -- 8.2.1.4 Remoteness -- 8.2.1.5 Self-healing ability -- 8.2.1.6 Biocompatibility -- 8.2.2 Display technologies in wearable devices -- 8.2.2.1 OLEDs for flexible displays -- 8.2.2.2 QLEDs for flexible displays -- 8.2.2.3 Mini/micro-LEDs for wearable devices -- 8.2.3 Stress sensing technologies in wearable devices -- 8.2.3.1 Piezoresistive stress sensors -- 8.2.3.2 Capacitive stress sensors -- 8.2.3.3 Optical stress sensors. , 8.2.3.4 Piezoelectric stress sensors -- 8.2.3.5 Triboelectric stress sensors -- 8.2.4 Overview of ML in electronic skins and wearable devices -- 8.3 ML for self-powered displays in wearable devices -- 8.3.1 Technical route -- 8.3.2 Key features -- 8.3.2.1 Emission spectra -- 8.3.2.2 Brightness -- 8.3.2.3 Durability -- 8.3.3 Recent progress -- 8.3.3.1 Developing ML materials for self-powered displays -- 8.3.3.2 Designing the structure of ML-based devices for self-powered displays -- 8.4 ML for stress sensing in wearable devices -- 8.4.1 Technical route -- 8.4.1.1 Structural configuration -- 8.4.1.2 Photodetector -- 8.4.1.3 Information acquisition of the sensor -- 8.4.1.4 Key features -- 8.4.1.5 Response time -- 8.4.1.6 Spatial resolution -- 8.4.1.7 Self-powering -- 8.4.1.8 Multimode sensing -- 8.4.2 Recent progress -- 8.4.2.1 ML-based sensors for electronic skins and wearable devices -- 8.4.2.2 Optical/electrical dual-channel sensors for electronic skins and wearable devices -- 8.5 Challenges and prospects -- 8.5.1 To enhance the functional features of ML materials and devices -- 8.5.2 To construct integrated intelligent systems -- 8.5.3 To improve the device architecture and manufacturing technology for large-scale production -- References -- 9 Mechanoluminescence for reconstructing 3D ultrasonic field -- 9.1 Introduction -- 9.2 Experiment -- 9.2.1 Basic concepts -- 9.2.2 Mechanoluminescent compounds -- 9.2.3 Methods -- 9.3 Back-projection tomography -- 9.4 Acoustically induced piezoluminescence visualization method -- 9.5 Solid-state reaction method -- 9.6 Literature review of specific applications of ML in 3D ultrasound imaging -- 9.7 Discussion -- 9.8 Conclusion -- References -- Further reading -- 10 Other emerging applications of mechanoluminescence and outlook -- 10.1 Introduction -- 10.2 History of ML applications. , 10.3 Classical applications of ML -- 10.3.1 Understanding ML in crystals -- 10.3.2 ML in stress sensing -- 10.3.3 ML in damage sensing -- 10.4 Other emerging applications -- 10.4.1 Force-induced charge carrier storage -- 10.4.2 ML in medicals -- 10.4.3 Skin sensing and artificial intelligence -- 10.4.4 Cracked bones detection -- 10.4.5 ML in optogenetics and drug delivery system -- 10.4.6 Wearable electronics -- 10.4.7 Sensing other fields -- 10.4.8 Wind-driven mechanoluminescence -- 10.4.9 Radiation dosimetry -- 10.4.10 Military and aerospace applications -- 10.4.11 Light sources and displays -- 10.4.12 Other applications -- 10.5 Challenges -- 10.6 Summary -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 0-323-95301-8
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz