Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949858846602882
    Umfang: 1 online resource (80 pages)
    Ausgabe: 1st ed.
    ISBN: 9789240029507
    Anmerkung: Intro -- Fig 1: Schematic representation of the risk and self-control intervals for adverse events with a risk interval from d0 to d7, a washout period of one week (d8-d14), and a self-control interval three times the length of the risk interval (d15-d38), where d -- Fig 2: Minimum number of cases required to reject the null hypothesis that the relative incidence of the AESI during the risk versus self-control interval is equal to 1. The probability of type-I error is set at 5%, the power at 80%, and the proportion of -- Fig 3: Summary of study flow and data collection for case-control studies -- Fig 4: Minimum number of cases required to detect odds ratios (ORs) from 2 to 5 for different levels of vaccination coverage, assuming a power of 80%, a probability of type-I error at 5%, and control-to-case ratio of 1:1, 2:1, 3:1 and 4:1. -- Table 1: Study sites with principal investigators and contact details -- Table 2: Minimum number of cases required to reject the null hypothesis that the relative incidence of AESI during risk versus self-control intervals is equal to 1. Probability of type-I error is set at 5%, power at 80%, and proportion of the total observ -- Table 3: Catchment area sizes required to detect a relative incidence of 2, 3, 4 or 5 for AESIs with annual background rates varying from 0.1-1000 per 100,000 people and a post-vaccination risk interval of 7 or 42 days, at different levels of vaccination -- Table 4: Minimum number of cases required to detect different odds ratios (ORs) for 25%, 50% and 75% vaccination coverage, assuming a power of 80%, a probability of type-I error at 5%, and a control-to-case ratio of 1:1, 2:1, 3:1 and 4:1. , Table 5: Catchment population required to detect an odds ratio (OR) of 2 to 5 for AESIs with known annual background rates varying from 0.1 to 1,000 per 100,000 people per year at three different levels of vaccination coverage (in controls), control-to-ca -- Table 6: Catchment population required to detect an odds ratio (OR) of 2 to 5, for AESIs with known annual background rates varying from 0.1 to 1,000 per 100,000 people per year at three different levels of vaccination coverage (in controls), and control- -- Table A1-1: Adverse events of special interest (AESI), their risk windows, and recommended study design. -- Table A2-1: Adverse events of special interest (AESI), and Brighton Collaboration (BC) case definitions (if available). -- 1. Contents -- 2. List of tables -- 3. List of figures -- 4. Protocol sign-off -- 5. Documentation of protocol amendments -- 6. Study team and responsibilities -- 6.1 Study team -- 6.2 Responsibilities -- 7. Abbreviations -- 8. Synopsis -- 9. Background and rationale -- 10. Objectives -- 10.1 Primary objective -- 11. Methods -- 11.1 Settings -- 11.2 Study sites -- 11.3 Study design -- 11.4 Self-controlled risk interval (SCRI) study -- 11.4.1 Study population -- 11.4.2 Study period -- 11.4.3 Study variables -- 11.4.4 Data sources -- 11.4.5 Study flow and data collection -- 11.4.6 Withdrawal from the study -- 11.4.7 Pregnancy -- 11.4.8 Sample size -- 11.4.9 Data analyses -- 11.5 Case-control study -- 11.5.1 Study population -- 11.5.2 Study period -- 11.5.3 Study variables -- 11.5.4 Controls -- 11.5.5 Other variables -- 11.5.6 Data sources -- 11.5.7 Study flow and data collection -- 11.5.8 Withdrawal from the study -- 11.5.9 Pregnancy -- 11.5.10 Sample size -- 11.5.11 Data analysis -- 12. Standardized analyses -- 12.1 Multi-site recruitment -- 12.2 Different COVID-19 vaccines -- 13. Data management. , 13.1 Data entry using an electronic tool -- 13.1.1 Data security -- 13.2 Data transfer -- 13.3 Data retention and archiving -- 14. Quality assurance, monitoring and reporting -- 14.1 Monitoring -- 14.2 Periodic reporting -- 14.3 Final analyses and reporting -- 15. Study management -- 15.1 Data transfer -- 15.2 Data retention and archiving -- 15.3 National pharmacovigilance centre/AEFI committee/national immunization programme manager/dedicated scientific committee -- 15.4 Changes to the protocol -- 15.5 Management and reporting of adverse events and adverse reactions -- 16. Ethical considerations -- 16.1 Guiding principles -- 16.2 Respecting participants' autonomy -- 16.3 Participant confidentiality -- 16.4 Independent Ethics Committee/Institutional Review Board -- 17. Dissemination of study results -- 18. Study limitations -- 19. References -- 20. Annexes -- Annex 1 -- Adverse events of special interest -- Annex 2 -- Case definitions -- Annex 3 -- Catchment population calculation for SCRI study design -- Annex 4 -- Catchment population calculation for case-control study design -- Annex 5 -- Data dictionary -- Annex 6 -- Relationships between study tables -- Annex 7 -- Informed consent form.
    Weitere Ausg.: Print version: Protocol Template to Be Used As Template for Observational Study Protocols for Sentinel Surveillance of Adverse Events of Special Interest (AESIs) after Vaccination with COVID-19 Vaccines Geneva : World Health Organization,c2021
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949232410802882
    Umfang: 1 online resource (xix, 423 pages). : , illustrations.
    Serie: Woodhead publishing series in energy
    Anmerkung: Front Cover -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles -- Woodhead Titles -- Other Related Elsevier Titles -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power CyclesWoodhead Publishing Series in Energy ... -- Copyright -- Contents -- List of contributors -- The Editors -- Acknowledgments -- Foreword -- Overview -- Overview -- Key Terms -- 1. Introduction -- 2. Brayton cycles based on CO2 as the working fluid -- 3. Recompression indirect-fired Brayton cycle -- 4. Recompression supercritical CO2 Brayton cycle versus Rankine cycle -- 5. Semiclosed direct-fired oxyfuel Brayton cycle -- 6. Brayton cycles based on other supercritical fluids -- References -- 1 - Introduction and background -- Overview -- Key Terms -- 1.1 Introduction -- 1.2 Overview of supercritical CO2 power cycle fundamentals -- 1.2.1 Cycle machinery and balance of plant -- 1.2.1.1 Turbomachinery -- 1.2.1.2 Heat exchangers -- 1.2.1.3 Bearings and seals -- 1.2.1.4 Balance of plant -- Generators, motors, and gear systems -- Generators -- Gearbox systems -- Piping and skids -- System layout and control issues -- 1.3 Applications for sCO2 power cycles -- 1.3.1 Waste heat recovery -- 1.3.2 Concentrated solar power -- 1.3.3 Fossil fuel power plants -- 1.3.4 Nuclear plants -- 1.3.5 Bulk energy storage, geothermal sCO2 power plants, and biofuel plants -- 1.4 Summary and conclusions -- References -- 2 - Physical properties -- Overview -- Key Terms -- 2.1 Introduction -- 2.2 Qualities of supercritical CO2 -- 2.3 Equations of state for calculating supercritical CO2 properties -- 2.3.1 Categories of equations of state -- 2.3.2 Available software -- 2.3.3 Common equations of state used in software -- 2.3.4 Issues with using equations of state for supercritical CO2. , 2.3.5 Experimental data for supercritical CO2 properties -- 2.4 Overview of thermodynamic property trends -- 2.5 Impurities of CO2 mixtures -- 2.6 Summary -- References -- 3 - Thermodynamics -- Overview -- Key Terms -- 3.1 Introduction -- 3.2 Governing relationships -- 3.2.1 Conservation of mass and energy -- 3.2.2 Entropy and the second law of thermodynamics -- 3.2.3 Exergy and irreversibility -- 3.3 Analysis -- 3.3.1 Turbomachinery -- 3.3.2 Ducts and piping -- 3.3.3 Heat exchangers -- 3.4 Example applications -- 3.4.1 Simple recuperated cycle -- 3.4.2 Recompression cycle -- 3.5 Conclusions -- References -- 4 - High-temperature materials -- Overview -- Key Terms -- 4.1 Introduction -- 4.1.1 Alloy creep limitations -- 4.1.2 Creep of thin-walled components -- 4.1.3 High-temperature oxidation -- 4.2 Thermodynamics of oxidation -- 4.3 Investigations of high-temperature corrosion in ambient and subcritical CO2 -- 4.4 Laboratory investigations of supercritical CO2 corrosion rates and reaction products -- 4.4.1 Idaho National Laboratory -- 4.4.2 Japan Atomic Energy Agency -- 4.4.3 Centre dEtudes Atomiques -- 4.4.4 Massachusetts Institute of Technology -- 4.4.5 University of Wisconsin -- 4.4.6 Carleton University/Natural Resources Canada -- 4.4.7 Sandia National Laboratory -- 4.4.8 Korea Advanced Institute for Science and Technology -- 4.4.9 Oak Ridge National Laboratory -- 4.4.10 Commonwealth Scientific and Industrial Research Organisation -- 4.4.11 Effect of impurities on corrosion rates in supercritical CO2 -- 4.5 Effect of CO2 on mechanical properties -- 4.6 Current status and ongoing supercritical CO2 work -- 4.7 Future directions -- 1. Define materials limits, including mechanical effects -- 2. Testing in flowing sCO2 -- 3. Effect of impurities on corrosion at high temperature -- 4. Materials for advanced heat exchangers. , 5. Alloy/coating development for sCO2 -- 6. Formation of an sCO2 consortium -- 4.8 Conclusions -- Acknowledgments -- References -- 5 - Modeling and cycle optimization -- Overview -- Key Terms -- 5.1 Introduction to cycle modeling -- 5.2 Basics of cycle modeling -- 5.2.1 Fluid properties -- 5.2.2 Coolers and heaters -- 5.2.3 Recuperators -- 5.2.4 Turbomachinery -- 5.2.5 Piping and valves -- 5.3 Design point analysis -- 5.3.1 Cycle comparison -- 5.3.2 Impact of cycle temperatures -- 5.4 Considerations for off-design modeling -- 5.4.1 Turbomachinery -- 5.4.2 Recuperators -- 5.4.3 Valves -- 5.5 Advanced considerations for steady-state modeling -- 5.6 Cycle optimization -- 5.7 Transient code requirements -- 5.7.1 Effects of system scale -- 5.7.2 Example of a transient analysis code -- 5.8 Conclusion -- References -- 6 - Economics -- Overview -- Key Terms -- 6.1 Introduction (advantages and disadvantages in potential markets) -- 6.2 Potential markets -- 6.2.1 Industrial waste heat recovery -- 6.2.2 Concentrated solar power -- 6.2.3 Fossil fuel power plants -- 6.2.4 Nuclear plants -- 6.2.5 Bulk energy storage and geothermal supercritical CO2 power plants -- 6.3 Introduction to the economics of supercritical CO2 power plants -- 6.3.1 Levelized cost of electricity -- 6.3.2 Internal rate of return -- 6.3.3 Net present value -- 6.4 Project cost basis -- 6.4.1 Recuperator -- 6.4.2 Supercritical CO2 gas chiller -- 6.4.3 Waste heat recovery unit -- 6.4.4 Turbomachinery plus other component BOP costs -- 6.4.5 Gas turbine cost -- 6.4.6 Supercritical CO2 bottoming cycle cost estimate -- 6.5 Summary and conclusions of supercritical CO2 power system economics -- References -- 7 - Turbomachinery -- Overview -- Key Terms -- 7.1 Introduction -- 7.2 Machinery configurations -- 7.2.1 Radial/axial -- 7.2.2 Generator connection and gearing configurations. , 7.2.3 Dual or single shaft -- 7.3 Existing supercritical CO2 turbomachinery designs -- 7.3.1 Existing prototypes -- 7.3.1.1 The 100-kWe-scale demonstration prototypes -- 7.3.1.2 The 250-kWe to 8-MWe-Scale commercial prototypes (Echogen) -- 7.3.1.3 General Electric/Southwest Research Institute 10-MWe-scale prototype -- 7.3.2 Turbomachinery in literature -- 7.3.2.1 Angelino (1968) 1000-MWe turbine -- 7.3.2.2 Dostal et al. (2004) 246-MWe turbomachinery -- 7.3.2.3 Gas Technology Institute 10/550/645/1000-MWe turbomachinery -- 7.3.2.4 Toshiba 25-MW direct-fired turbine -- 7.3.2.5 GE/SwRI 50 and 450-MWe trains -- 7.3.2.6 Hanwha Techwin/SwRI integrally geared compander -- Case study: 20-MWe recompression cycle -- 7.4 Common design attributes and components -- 7.4.1 Bearings -- 7.4.1.1 High surface speeds -- 7.4.1.2 High unit loading -- 7.4.2 Rotordynamics -- 7.4.2.1 Introduction to rotordynamic instability -- 7.4.2.2 Cross-coupling in annular seals and secondary flow passages -- 7.4.2.3 Shaft axial length -- 7.4.2.4 Rotordynamics case study: 20-MWe supercritical CO2 expander -- 7.4.3 Shaft end seals -- 7.4.3.1 Dry gas seals -- 7.4.3.2 Floating ring oil seals -- 7.4.4 Pressure containment -- 7.4.4.1 Static seals -- 7.4.5 Starting -- 7.4.6 Integration with load control -- 7.5 Compressor and pump design considerations for supercritical CO2 -- 7.5.1 Impeller mechanical design -- 7.5.2 Aerodynamic performance -- 7.5.2.1 Aerodynamic design: 20-MWe case study -- 7.5.3 Surge control -- 7.6 Turbine design considerations for supercritical CO2 -- 7.6.1 Overspeed risk -- 7.6.2 Thermal management -- 7.6.3 Thermal transient effects on pressure containment (challenges, liner concept, other concepts) -- 7.6.4 Turbine rotor/blade mechanical design -- 7.6.5 Turbine aerodynamic performance -- 7.7 Summary -- References -- 8 - Heat exchangers -- Overview -- Key Terms. , 8.1 Introduction -- 8.2 Applications in supercritical CO2 power cycles -- 8.2.1 Heaters -- 8.2.2 Recuperators -- 8.2.3 Coolers -- 8.3 Candidate architectures -- 8.3.1 Shell and tube -- 8.3.2 Microtube -- 8.3.3 Printed circuit -- 8.3.4 Plate fin -- 8.3.5 Emerging designs -- 8.4 Operating conditions and requirements -- 8.4.1 Operating temperature -- 8.4.2 Operating pressure -- 8.4.3 Transient operation -- 8.4.4 Emergency shutdown operation -- 8.5 Design considerations -- 8.5.1 Life and durability -- 8.5.2 Maintenance -- 8.5.3 Cost -- 8.5.4 Heat exchanger design fundamentals -- 8.5.4.1 Thermal performance and heat transfer -- Correlations and empirical results -- 8.5.4.2 Hydraulic performance -- 8.6 Design validation -- 8.6.1 Thermal-hydraulic performance -- 8.6.2 Strength testing -- 8.6.3 Creep testing -- 8.6.4 Fatigue testing -- 8.7 Conclusion -- References -- 9 - Auxiliary equipment -- Overview -- Key Terms -- 9.1 CO2 supply and inventory control systems -- 9.2 Filtration -- 9.3 Dry gas seal supply and vent system -- 9.4 Instrumentation -- 9.5 Summary -- References -- 10 - Waste heat recovery -- Overview -- Key Terms -- 10.1 Introduction -- 10.2 Waste heat recovery overview -- 10.2.1 Quality of heat and system efficiency -- 10.2.2 Quantity of heat and potential energy -- 10.2.3 Waste heat temperature -- 10.3 Waste heat recovery applications -- 10.3.1 Glass manufacturing -- 10.3.2 Steel manufacturing -- 10.3.3 Cement manufacturing -- 10.3.4 Gas turbine engine -- 10.3.5 Reciprocating engine -- 10.4 Waste heat exchanger design -- 10.5 Economics and competitive assessment -- 10.6 Technology development needs -- References -- 11 - Concentrating solar power -- Overview -- Key Terms -- 11.1 Motivation for integrating supercritical CO2 into CSP systems -- 11.1.1 Concentrating solar power's role in a renewable energy future. , 11.1.2 General concentrating solar power attributes and the benefits of supercritical CO2 to CSP.
    Weitere Ausg.: ISBN 0-08-100804-X
    Weitere Ausg.: ISBN 0-08-100805-8
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts :Chandos Publishing,
    UID:
    almahu_9948212038002882
    Umfang: 1 online resource (302 pages).
    ISBN: 0-08-102410-X
    Serie: Chandos social media series
    Anmerkung: Part I: The social media landscape at the academic library -- 1. How to assess students' social media preferences: a comparison at two academic institutions / Dan Sich and Mark Aaron Polger -- 2. Social media committees: sharing the library's voice / Alejandra Nann and Nina Verishagen -- 3. The right social media platform for your library / Morgan Swan -- 4. Social media best practices: implementing guidelines for disability and copyright / Sarah Christensen and J.J. Pionke -- 5. Using scheduling apps to streamline a social media workflow / Samantha Paul and Michael Holt -- Part II: Tried and tested by librarians: social media case studies -- 6. Instagram -- 6.1 Case study 1: Using Instagram to engage students during library orientation / Katie Hutchison and Stephanie Henderson -- 6.2 Case study 2: Enhancing your Instagram following through interdepartmental collaboration / Jen Park and Steve Fowler -- 6.3 Case study 3: Student social media representatives and Instagram: connecting with the campus community through library student workers / Laura Wilson and Heather Domenicis -- 6.4 Case study 4: Are we failing at Instagram? / Matthew Blaine and Jacalyn Kremer -- 7. Twitter -- 7.1 Case study 1: Tweeting to success: managing an academic library's Twitter campaign to enhance user engagement / Emy N. Decker -- 7.2 Case study 2: Drop everything and tweet: building community on your campus / Joanna Ewing, Amber Wilson and Karen Pruneda -- 7.3 Case study 3: What do you do when they start talking back? Training librarians for next-level Twitter engagement using Springshare's LibAnswers / Sheeji Kathuria and Amanda Clay Powers -- 7.4 Case study 4: Rising above the noise: increasing local engagement through a global hashtag campaign / Emily Jack -- 8. Facebook -- 8.1 Case study 1: Breaking up is hard to do: UAB libraries and Facebook's mis(sed)connection / Dana Hettich and Becca Billings -- 8.2 Case study 2: Buying likes: our library jumped from 200 to 1000 (student) likes in 5 months / Nina Verishagen and Ann Liang -- 8.3 Case study 3: So you have been given the social media passwords. Now what? A trial-by-fire case study in Facebook marketing / Molly Marcusse -- 9. YouTube -- 9.1 Case study 1: Thousands of views: why three simple library videos have done so well / Dan Sich -- 9.2 Case study 2: Show me: getting YouTube videos to your students through SEO / Lauren Valentino Bryant -- 10. Snapchat -- 10.1 Case study 1: Snapchat in academic libraries: we ain't afraid of no ghost / Nicole Maddock, Monica Fazekas and Kevin Tanner -- 10.2 Case study 2: Snap to it: reaching users where they are with Snapchat geofilters / Laura MacLeod Mulligan and Alexander S. Di lorio -- 11. Pinterest -- 11.1 Case study 1: Extending the library's presence into the virtual space using Pinterest / Brandy R. Horne
    Weitere Ausg.: ISBN 0-08-102409-6
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    almahu_9949225727102882
    Umfang: 1 online resource (290 pages)
    ISBN: 0-12-822243-3
    Anmerkung: Front Cover -- Assisted History Matching for Unconventional Reservoirs -- Copyright Page -- Dedication -- Contents -- About the authors -- Preface -- 1 Introduction and literature review -- 1.1 Motivation -- 1.2 Literature review -- 1.2.1 History matching algorithms -- 1.2.2 Fracture modeling -- 1.2.3 Other challenges in unconventional reservoirs -- 1.3 Assisted history matching in unconventional reservoirs -- References -- 2 Methodology -- 2.1 Assisted history-matching framework -- 2.2 Embedded discrete fracture model -- 2.3 Reservoir simulator -- 2.3.1 Multiphase flow governing equations -- 2.4 Proxy model -- 2.4.1 k-nearest neighbors -- 2.4.2 Neural networks -- 2.5 Proxy-based Markov chain Monte Carlo algorithm -- 2.5.1 Markov chain Monte Carlo -- 2.5.2 Proxy-based MCMC algorithm and stopping criteria -- 2.6 Steps in assisted history-matching workflow -- 2.6.1 Parameters identification and screening -- 2.6.1.1 Multiple objective functions -- 2.6.2 History matching -- 2.6.3 Probabilistic forecasting -- References -- 3 Validation of assisted history matching for a synthetic shale gas well -- 3.1 Introduction -- 3.2 Case 1: hydraulic fractures only -- 3.2.1 Reservoir model -- 3.2.2 History matching -- 3.2.3 Posterior distribution -- 3.2.4 Production forecast -- 3.2.5 Pressure visualization -- 3.3 Case 2: hydraulic fractures and natural fractures -- 3.3.1 Reservoir model -- 3.3.2 History matching -- 3.3.3 Posterior distribution -- 3.3.4 Production forecast -- 3.3.5 Pressure visualization -- 3.4 Remarks -- 4 Shale-gas well in Longmaxi Shale with bi-wing hydraulic fractures -- 4.1 Introduction -- 4.2 Reservoir model -- 4.3 Comparison between EDFM and LGR -- 4.4 Parameters identification and screening -- 4.5 History matching -- 4.6 Probabilistic production forecasting -- 4.7 Remarks -- References. , 5 Shale-gas well in Marcellus Shale with bi-wing hydraulic fractures -- 5.1 Introduction -- 5.2 Reservoir model -- 5.3 Sensitivity analysis -- 5.4 History matching -- 5.5 Posterior distribution of matrix and fracture parameters -- 5.6 Probabilistic production forecasting -- 5.7 Remarks -- Reference -- 6 Proxy comparison between neural network and k-nearest neighbors -- 6.1 Introduction -- 6.2 Reservoir model -- 6.3 Parameters identification and screening -- 6.4 History matching -- 6.5 Probabilistic forecasting -- 6.6 Remarks -- References -- 7 Shale-gas well with and without enhanced permeability area -- 7.1 Introduction -- 7.2 Parameters identification and screening -- 7.3 History matching -- 7.4 Probabilistic forecasting -- 7.5 Remarks -- References -- 8 Shale-gas well with and without natural fractures -- 8.1 Introduction -- 8.2 Reservoir model -- 8.3 History matching -- 8.3.1 Case 1: hydraulic fractures only (no natural fractures) -- 8.3.2 Case 2: hydraulic fractures and natural fractures (with NF) -- 8.4 Discussion -- 8.5 Probabilistic production forecast -- 8.6 1000 History-matching solutions from neural networks -- 8.7 Benefits from the study -- 8.8 Remarks -- References -- 9 Shale-oil well with and without natural fractures -- 9.1 Introduction -- 9.2 Reservoir model -- 9.3 History matching -- 9.3.1 Case 1: hydraulic fractures only -- 9.3.2 Case 2: hydraulic fractures and single realization of natural fractures -- 9.3.3 Case 3: hydraulic fractures and full realization of natural fractures -- 9.4 History-matching results and discussion -- 9.5 Probabilistic production forecast -- 9.6 History-matching solutions from neural networks -- 9.7 Benefits from the study -- 9.8 Remarks -- References -- 10 Investigation of different production performances in multiple shale-gas wells -- 10.1 Introduction -- 10.2 Reservoir model. , 10.3 Automatic history matching -- 10.4 Probabilistic production forecast -- 10.5 Remarks -- References -- Appendix A Wells A and B results -- 11 Concluding remarks -- 11.1 Key conclusions -- 11.2 Recommendations -- 11.2.1 Proxy-based MCMC algorithm and AHM workflow codes -- 11.2.2 Fracture modeling -- 11.2.3 Applications of AHM workflow -- Index -- Back Cover.
    Weitere Ausg.: ISBN 0-12-822242-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    almahu_9948212094102882
    Umfang: 1 online resource (562 pages)
    ISBN: 0-12-818114-1 , 0-12-818113-3
    Anmerkung: Includes index. , Front Cover -- Decommissioning Forecasting and Operating Cost Estimation: Gulf of Mexico Well Trends, Structure Inventory and Forecast Models -- Copyright -- Contents -- Acknowledgment -- Abbreviations and Units -- Box list -- Executive Summary -- Overview -- Organization -- Outline -- Highlights -- Data and Statistics -- Units -- References -- Part One: Overview -- Chapter One: Production and Active Inventories -- 1.1. The Setting -- 1.1.1. Gulf of Mexico -- 1.1.2. Shelf vs. Slope -- 1.1.3. State vs. Federal Waters -- 1.1.4. Shallow Water vs. Deepwater -- 1.1.5. Sigsbee Escarpment -- 1.1.6. Outer Continental Shelf Lands Act -- 1.1.7. Protraction Areas -- 1.2. Production -- 1.3. Active Inventory -- 1.4. Stock Changes -- 1.5. Trends -- 1.5.1. Shallow Water -- 1.5.2. Deepwater -- 1.6. Oil vs. Gas Structures -- 1.7. Production Status -- 1.7.1. Classification -- 1.7.2. Shallow Water -- 1.7.3. Deepwater -- References -- Chapter Two: Structure Classification -- 2.1. Structure Type -- 2.1.1. Shallow Water -- 2.1.2. Deepwater -- Fixed Platforms -- Compliant Towers -- Floaters -- 2.2. Manned Structures -- 2.3. Multi-Structure Complexes -- 2.4. Production Status -- 2.4.1. Producing Structures -- 2.4.2. Auxiliary Structures -- 2.4.3. Idle Structures -- 2.5. Number of Wells -- 2.6. Hub Platforms -- 2.6.1. Classification -- 2.6.2. Process and Export Capacity -- 2.6.3. First Generation Hubs -- 2.6.4. Second Generation Hubs -- References -- Chapter Three: Installation and Decommissioning Activity -- 3.1. Cumulative Activity -- 3.1.1. Shallow Water -- 3.1.2. Deepwater -- 3.2. Shallow Water Trends -- 3.2.1. Annual Activity -- 3.2.2. Installation by Decade -- 3.2.3. Decommissioning by Decade -- 3.3. Deepwater Trends -- 3.3.1. Annual Activity -- 3.3.2. Installation by Decade -- 3.3.3. Decommissioning by Decade -- References -- Chapter Four: Economic Limit Factors. , 4.1. Operating Cost Characteristics -- 4.2. Cash Flow Model -- 4.3. General Considerations -- 4.3.1. Reserves Application -- 4.3.2. Production Beyond Economic Limit Is Not Reserves -- 4.3.3. Strategic Factors Complicate Interpretation -- 4.3.4. Proxy for Commercial Operations -- 4.4. Factor Description -- 4.4.1. Structure Type -- 4.4.2. Water Depth -- 4.4.3. Oil vs. Gas -- 4.4.4. Manned Status -- 4.4.5. Operator -- 4.4.6. Well Type -- 4.4.7. Intervention Frequency -- 4.4.8. Other Factors -- 4.5. Flow Assurance -- 4.5.1. Issues -- 4.5.2. Subsea Production System Design -- 4.5.3. Hydrates -- 4.5.4. Waxes -- 4.5.5. Asphaltenes -- 4.5.6. Inorganic Scale -- References -- Chapter Five: Reserves and Resources -- 5.1. Prospects, Plays, Fields and Reserves -- 5.2. Geologic Time -- 5.3. Gulf of Mexico Geology -- 5.3.1. Formation -- 5.3.2. Shallow Water (Modern Shelf) -- 5.3.3. Deepwater (Modern Slope) -- 5.4. Field Reserves -- 5.4.1. Data Source -- 5.4.2. Cumulative Production and Reserves -- 5.4.3. Field Counts and Reserves -- 5.4.4. Creaming Curves -- 5.4.5. Reserves vs. Production -- 5.4.6. Field-Size Distribution -- 5.4.7. Largest Fields -- 5.4.8. Field-Size Distribution Shift -- 5.5. Reserves Growth -- 5.6. Undiscovered Resources -- References -- Part Two: Well Trends and Structure Inventory -- Chapter Six: Well Trends -- 6.1. Well Type -- 6.2. Wells Spud -- 6.3. Exploration Wells -- 6.4. Development Wells -- 6.5. Abandoned Wells -- 6.6. Producing and Idle Wells -- 6.7. Subsea Completions -- References -- Chapter Seven: Shallow-Water Structure Inventory -- 7.1. Producing Structures -- 7.1.1. 2017 Revenue -- 7.1.2. Total Primary Production -- 7.1.3. Total Cumulative Primary Production -- 7.1.4. Future Dynamics -- 7.2. Idle Structures -- 7.2.1. Idle Inventory -- 7.2.2. Idle Age -- 7.2.3. Idle Age at Decommissioning -- 7.3. Auxiliary Structures. , Chapter Eight: Shallow-Water Economic Limit Statistics -- 8.1. Methodology -- 8.1.1. Revenue Model -- 8.1.2. Categorization -- 8.1.3. Sample -- 8.1.4. Exclusions -- 8.1.5. Adjusted Gross Revenue -- 8.2. Distributions -- 8.2.1. Oil vs. Gas Structures -- 8.2.2. Structure Type and Manned Status -- 8.3. Time Trends -- 8.3.1. Structures -- 8.3.2. Oil vs. Gas Structures -- 8.3.3. Water Depth -- 8.3.4. Moving Time Windows -- 8.4. Factor Model -- 8.4.1. Model Specification -- 8.4.2. Results and Discussion -- 8.5. Limitations -- 8.5.1. Generalization -- 8.5.2. Gross Revenue Approximation -- 8.5.3. Structure Classification -- 8.5.4. Interpretation -- 8.5.5. For All Other Things Equal -- 8.5.6. Independence -- 8.5.7. Aggregation and Categorization -- References -- Chapter Nine: Deepwater Structure Inventory -- 9.1. Floater Equipment Capacity -- 9.2. Floater Capacity-Reserves Statistics -- 9.2.1. Capacity-to-Reserves Ratio -- 9.2.2. Capacity-to-Reserves Statistics -- 9.3. Well Type -- 9.4. Production -- 9.5. Gross Revenue -- 9.6. Reserves -- 9.7. PV-10 -- 9.8. Fixed Platforms, 400-500ft -- 9.8.1. Idle -- 9.8.2. Gross Revenue 500ft -- 9.9.1. Idle -- 9.9.2. Gross Revenue 1000 Million -- References -- Chapter Ten: Deepwater Economic Limit Statistics -- 10.1. Methodology -- 10.1.1. Revenue Model -- 10.1.2. Primary Product -- 10.1.3. Adjusted Gross Revenue. , 10.2. Decommissioned Structures -- 10.2.1. Sample -- 10.2.2. Aggregate Economic Limits -- 10.2.3. Economic Limits by Structure Type -- 10.3. Bottom Hole Flowing Pressure -- 10.4. Subsea Well Intervention -- 10.5. Permanently Abandoned Wells -- 10.5.1. Sample -- 10.5.2. Exclusions -- 10.5.3. Dry Tree vs. Wet Tree -- 10.5.4. Water Cuts -- 10.5.5. Oil vs. Gas Wells -- 10.5.6. Wet Tree Wells -- Distance to Host -- Elevation Difference -- 10.6. Limitations -- References -- Part Three: Decommissioning Forecast -- Chapter Eleven: Methodology and Parameterization -- 11.1. Introduction -- 11.1.1. Overview -- 11.1.2. Challenges -- 11.1.3. Shallow Water vs. Deepwater -- 11.2. Model Framework -- 11.2.1. Producing Structures -- 11.2.2. Idle Structures -- 11.2.3. Auxiliary Structures -- 11.3. Producing Structure Decommissioning Model -- 11.3.1. Oil Wells vs. Gas Wells -- 11.3.2. Commodity Prices -- 11.3.3. Well Forecasting -- 11.3.4. Constant Reservoir and Investment Conditions -- 11.3.5. Gross Revenue -- 11.3.6. Structure Production -- 11.3.7. Net Revenue -- 11.3.8. Economic Limit -- 11.3.9. Abandonment and Decommissioning Time -- 11.4. Idle Structure Decommissioning Schedule Model -- 11.4.1. Parameter Models -- 11.4.2. Scenarios -- 11.4.3. Model Equations -- 11.4.4. Normalization -- 11.5. Auxiliary Structure Decommissioning Schedule Model -- 11.6. Installed Structures -- References -- Chapter Twelve: Two Examples -- 12.1. Tick and Ladybug -- 12.1.1. Development (Fig. 12.1) -- 12.1.2. Structure Production (Figs. 12.2 and 12.3) -- 12.1.3. Well Inventory (Table 12.1, Fig. 12.4) -- 12.1.4. Sidetrack Production (Fig. 12.5) -- 12.1.5. Subsea Production (Fig. 12.6) -- 12.1.6. Decline Curve Specification (Table 12.2) -- 12.1.7. Primary Production Forecast (Table 12.3) -- 12.1.8. CGOR and CCGR Trends (Fig. 12.7) -- 12.1.9. Secondary Product Forecast (Table 12.4). , 12.1.10. Structure Production Forecast (Fig. 12.8) -- 12.1.11. Net Revenue Forecast (Table 12.5) -- 12.1.12. Economic Limit Year Sensitivity (Table 12.6) -- 12.1.13. Proved Reserves Sensitivity (Table 12.7) -- 12.1.14. Reserves Valuation Sensitivity (Table 12.8) -- 12.1.15. Postscript Circa 2018 -- 12.2. Horn Mountain -- 12.2.1. Development (Fig. 12.9) -- 12.2.2. Structure Production (Figs. 12.10 and 12.11) -- 12.2.3. Well Inventory (Table 12.9, Fig. 12.12) -- 12.2.4. Decline Curve Specification (Table 12.10) -- 12.2.5. Primary Production Forecast (Table 12.11) -- 12.2.6. CGOR Trends (Figs. 12.12 and 12.13) -- 12.2.7. Secondary Production Forecast (Table 12.12) -- 12.2.8. Structure Production Forecast (Fig. 12.14) -- 12.2.9. Revenue Forecast (Table 12.13) -- 12.2.10. Economic Limit Sensitivity (Table 12.14) -- 12.2.11. Reserves Sensitivity (Table 12.15) -- 12.2.12. Reserves Valuation Sensitivity (Table 12.16) -- References -- Chapter Thirteen: Shallow Water Decommissioning Forecast -- 13.1. Model Recap -- 13.2. Producing Structure Decommissioning Forecast -- 13.2.1. Reference Case -- 13.2.2. Sensitivity Analysis -- 13.2.3. Hyperbolic vs. Exponential Decline Curve -- 13.2.4. Price Variation -- 13.2.5. Economic Limit Variation -- 13.2.6. Oil vs. Gas Structures -- 13.2.7. Commodity Price Adjustment -- 13.2.8. Royalty Relief -- 13.3. Hybrid Model Scenarios -- 13.3.1. Notation -- 13.3.2. Scenario Parameterization -- 13.3.3. Decommissioning Scenarios -- 13.3.4. Class Transitions -- 13.4. Active Inventory Scenario -- 13.5. Discussion -- 13.6. Limitations -- References -- Chapter Fourteen: Deepwater Decommissioning Forecast -- 14.1. Model Recap -- 14.2. Decommissioning Forecast -- 14.2.1. Producing Structures -- 14.2.2. Model Scenarios -- 14.2.3. Sensitivity Analysis -- 14.3. Active Structure Forecast -- 14.4. Limitations -- References. , Part Four: Critical Infrastructure Issues.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9948025409302882
    Umfang: 1 online resource (372 p.)
    ISBN: 0-444-63502-5 , 0-08-100086-3
    Serie: Frontiers of Nanoscience ; Volume 9
    Anmerkung: Description based upon print version of record. , Front Cover -- FRONTIERS OF NANOSCIENCE -- Protected Metal Clusters: From Fundamentals to Applications -- Copyright -- Contents -- Contributors -- Acknowledgments -- 1 - Introduction -- 1.1 PROTECTED METAL CLUSTERS: A BRIEF HISTORY -- 1.2 THE AIMS OF THE BOOK -- 1.3 THE OUTLINE OF THE BOOK -- 1.3.1 Synthesis -- 1.3.2 Characterization -- 1.3.3 Application -- REFERENCES -- 2 - Controlled Synthesis: Size Control -- 2.1 ATOMICALLY PRECISE SIZE CONTROL: WHY? -- 2.2 ATOMICALLY PRECISE SIZE CONTROL: HOW? -- 2.2.1 Template-Mediated Synthesis -- 2.2.2 Fractionation -- 2.2.2.1 Fractional Precipitation or Extraction -- 2.2.2.2 Partition Chromatography -- 2.2.2.3 Size Exclusion Chromatography -- 2.2.2.4 Gel Electrophoresis -- 2.2.3 Size-Focusing Synthesis -- 2.2.3.1 Postsynthetic Etching -- 2.2.3.2 Slow Growth -- 2.3 ISOLATED GOLD AND SILVER CLUSTERS -- 2.3.1 Gold Clusters Protected by Thiolates -- 2.3.1.1 Stable Chemical Compositions -- 2.3.1.2 Origin of Stability -- 2.3.2 Gold Clusters Protected by Other Ligands -- 2.3.3 Silver Clusters Protected by Thiolates -- 2.3.3.1 Stable Chemical Compositions -- 2.3.3.2 Origin of Stability -- 2.4 SIZE-DEPENDENT EVOLUTION -- 2.4.1 Electronic Structures -- 2.4.2 Geometric Structures -- 2.5 SUMMARY -- REFERENCES -- 3 - Controlled Synthesis: Composition and Interface Control -- 3.1 COMPOSITION AND INTERFACE CONTROL: WHY? -- 3.2 COMPOSITION CONTROL -- 3.2.1 Controlled Synthesis of Intermetallic Clusters -- 3.2.1.1 Coreduction of Multiple Types of Metal Ions -- 3.2.1.2 Reorganization -- 3.2.1.3 Deposition of Metal Atoms onto Metal Clusters by Galvanic or Anti-Galvanic Reaction -- 3.2.1.4 Addition of Metal Ions/Atoms onto Metal Clusters -- 3.2.2 Synthesized Intermetallic Clusters -- 3.2.2.1 Intermetallic Clusters Protected by Thiolates -- 3.2.2.2 Intermetallic Clusters Protected by Phosphines. , 3.2.2.3 Intermetallic Clusters Protected by Both Thiolates and Phosphines -- 3.2.3 Effects of the Mixing of Different Elements -- 3.2.3.1 Ag Substitution in Au Clusters -- 3.2.3.2 Ag Deposition/Addition onto Au Clusters -- 3.2.3.3 Cu Substitution in Au Clusters -- 3.2.3.4 Cu Capture in Au Clusters -- 3.2.3.5 Pt Substitution in Au Clusters -- 3.2.3.6 Pd Substitution in Au Clusters -- 3.2.3.7 Au Substitution in Ag Clusters -- 3.3 INTERFACIAL CONTROL -- 3.3.1 Controlled Synthesis of Au Clusters Protected by Other Ligands -- 3.3.2 Synthesized Au Clusters -- 3.3.2.1 Au Clusters Protected by the Other Calcogenates -- 3.3.2.2 Au Clusters Protected by Terminal Alkynes -- 3.3.3 Effects of the Use of Each Ligand -- 3.3.3.1 Other Chalcogenates -- 3.3.3.2 CCR -- 3.4 SUMMARY AND PERSPECTIVE -- REFERENCES -- 4 - Structural Engineering of Heterometallic Nanoclusters -- 4.1 INTRODUCTION -- 4.2 SYNTHETIC STRATEGIES TOWARD HETEROMETALLIC NANOCLUSTERS -- 4.2.1 Coreduction of Metal Precursors to Heterometallic Nanoclusters -- 4.2.2 Preparation of Heterometallic Nanoclusters from Premade Clusters -- 4.3 LIGAND-INDUCED STRUCTURAL ENGINEERING OF HETEROMETALLIC NANOCLUSTERS -- 4.3.1 Phosphine-Stabilized Heterometallic Nanoclusters -- 4.3.2 Thiolate-Stabilized Heterometallic Nanoclusters -- 4.3.3 Heterometallic Nanoclusters Costabilized by Phosphines and Thiolates -- 4.4 PROPERTIES OF ORGANIC-PROTECTED HETEROMETALLIC NANOCLUSTERS -- 4.5 SUMMARY -- REFERENCES -- 5 - Structure Determination by Single Crystal X-ray Crystallography -- 5.1 INTRODUCTION -- 5.2 STRUCTURE DETERMINATION BY SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHY -- 5.2.1 Preparing Homogeneous Material -- 5.2.2 Growing Crystals -- 5.2.2.1 Water-Soluble Material -- 5.2.2.2 Organosoluble Material -- 5.2.3 Collecting Single Crystal X-ray Diffraction Data -- 5.2.4 Solving Single Crystal Structures of Protected Metal Clusters. , 5.2.4.1 Refining Disorder -- 5.2.4.2 Evaluating Solutions -- 5.3 EXAMPLES -- 5.4 SUMMARY AND PROSPECTS -- REFERENCES -- 6 - Atomic-Scale Structure Analysis by Advanced Transmission Electron Microscopy -- 6.1 INTRODUCTION -- 6.2 TRANSMISSION ELECTRON MICROSCOPY -- 6.2.1 Aberration Correction -- 6.2.2 3D Structural Determination with Atomic Resolution -- 6.3 ATOMIC STRUCTURE AND DYNAMICS OF SMALL NANOCLUSTERS -- 6.3.1 Size-Dependent Structure and Dynamics -- 6.3.1.1 Polymorphism and Equilibration (100-1000 Atoms) -- 6.3.1.2 Low-Symmetry, Fluctuating Structures (< -- 100 Atoms) -- 6.3.2 Thiolate-Protected Gold Clusters -- 6.3.2.1 Imaging at Cryogenic Temperatures: Monolayer-Protected Au38 -- 6.3.2.2 Low-Kilovolt STEM Nanobeam Diffraction: Au144(SR)60 -- 6.3.2.3 Low-Dose TEM Imaging: Au68(SR)32 -- 6.4 SUMMARY AND PROSPECTS -- REFERENCES -- 7 - Structure Prediction by Density Functional Theory Calculations -- 7.1 INTRODUCTION -- 7.2 STRUCTURAL SEARCH -- 7.2.1 Staple Hypothesis -- 7.2.2 Staple Fitness -- 7.2.3 Interlocked Feature -- 7.2.4 Longer Motifs and Ring Hypothesis -- 7.2.5 vdW Interaction or Steric Effect on Structural Prediction -- 7.2.6 Fcc Core -- 7.3 SUMMARY AND PROSPECTS -- ACKNOWLEDGMENTS -- REFERENCES -- 8 - Electronic Structure: Shell Structure and the Superatom Concept -- 8.1 INTRODUCTION -- 8.2 ELECTRON SHELLS -- 8.2.1 Noninteracting Electrons in a Potential Well -- 8.2.2 Interacting Electron Gas-The Jellium Model -- 8.3 CONCEPT OF A SUPERATOM -- 8.3.1 Little History -- 8.3.2 The Superatom Concept for Monolayer-Protected Metal Clusters (MPCs) -- 8.3.3 The Story of Au38(SR)24-from an Interesting but Obscure Object to One of the Best Understood Clusters -- 8.3.4 A Brief Overview of Known MPC Structures -- 8.4 SUMMARY AND PROSPECTS -- ACKNOWLEDGMENTS -- REFERENCES -- 9 - Optical Properties and Chirality -- 9.1 INTRODUCTION. , 9.2 BACKGROUND -- 9.3 OPTICAL PROPERTIES -- 9.3.1 Fundamental Origin -- 9.3.2 Accuracy Considerations -- 9.3.2.1 Solvent -- 9.3.2.2 Level of Theory -- 9.3.2.3 Ligands -- 9.3.2.4 Spin-Orbit Coupling -- 9.3.3 Effect of Doping on the Optical Absorption Spectrum of Au25(SR)18− -- 9.3.3.1 Silver Doping -- 9.3.3.2 Other Metals -- 9.3.3.3 Se and Te-Based Ligands -- 9.3.4 Other Nanoparticle Stoichiometries -- 9.3.4.1 Au38(SR)24 -- 9.3.4.2 Large Systems -- 9.3.4.3 Gold Nanoparticles with Known Crystal Structures -- 9.3.4.4 Gold Nanoparticle Structure Prediction Using Optical Absorption Comparison -- 9.3.4.5 Gold MPCs with Other Ligands -- 9.3.4.6 Silver-Thiolate MPCs -- 9.4 NONLINEAR OPTICAL PROPERTIES -- 9.5 CHIRALITY AND CHIROPTICAL PROPERTIES -- 9.5.1 Fundamental Origin -- 9.5.2 Gold-Thiolate MPC Chirality -- 9.5.3 Computed CD Spectra for MPCs -- 9.5.4 Silver MPCs -- 9.6 SUMMARY AND PROSPECTS -- REFERENCES -- 10 - Atomically Precise Gold Nanoclusters Catalyzed Chemical Transformations -- 10.1 INTRODUCTION -- 10.2 OVERVIEW OF AUN(SR)M NANOCLUSTERS -- 10.2.1 Size-Focusing Syntheses and Determination of Atomic Structures -- 10.2.1.1 The Au25(SR)18 Nanocluster -- 10.2.1.2 The Au38(SR)24 Nanocluster -- 10.2.1.3 The Au144(SR)60 Nanocluster -- 10.2.2 Thermal Stability -- 10.2.3 Reactivity with O2 -- 10.3 CATALYTIC PROPERTIES OF AUN(SR)M NANOCLUSTERS -- 10.3.1 Catalytic Oxidation -- 10.3.1.1 Catalytic Oxidation of Carbon Monoxide -- 10.3.1.2 Selective Oxidation of Styrene -- 10.3.1.3 Catalytic Oxidation of Benzyl Alcohol -- 10.3.1.4 Aerobic Oxidation of Cyclohexane -- 10.3.1.5 Selective Oxidation of Sulfides -- 10.3.2 Catalytic Hydrogenation -- 10.3.2.1 Hydrogenation of Nitrophenol -- 10.3.2.2 Selective Hydrogenation of Aldehydes and Ketones -- 10.3.2.3 Selective Hydrogenation of Nitrobenzaldehyde Derivatives -- 10.3.2.4 Semihydrogenation of Alkynes. , 10.3.3 Catalytic Carbon-Carbon Coupling Reactions -- 10.3.3.1 Ullmann-type Homocoupling Reaction -- 10.3.3.2 Sonogashira Cross-Coupling Reaction -- 10.3.4 Catalytic Effects of Heteroatom-Doped Nanoclusters -- 10.4 SUMMARY -- ACKNOWLEDGMENT -- REFERENCES -- 11 - Functionalization and Application -- 11.1 INTRODUCTION -- 11.2 FUNCTIONALIZATION -- 11.2.1 Metal Core Modification -- 11.2.1.1 Pd-Doped Au NCs -- 11.2.1.2 Pt-Doped Au NCs -- 11.2.1.3 Ag-Doped Au NCs -- 11.2.1.4 Cu-Doped Au NCs -- 11.2.1.5 Others -- 11.2.2 Surface Modification -- 11.2.2.1 Ligand Exchange: Phosphine versus Thiolate -- 11.2.2.2 Ligand Exchange: Thiolate versus Thiolate -- 11.2.2.3 Ligand Exchange: Thiolate versus Selenolate -- 11.2.3 Surface Functionalization -- 11.2.3.1 Silica Coating -- 11.2.3.2 Polymer Coating -- 11.3 APPLICATIONS -- 11.3.1 Sensing -- 11.3.1.1 Metal Ion Sensing -- 11.3.1.1.1 Based on Fluorescence Quenching -- 11.3.1.1.2 Based on Fluorescence Enhancement -- 11.3.1.1.3 Based on FRET -- 11.3.1.1.4 Based on Scattering -- 11.3.1.1.5 Other Metal Ions -- 11.3.1.2 Anion Sensing -- 11.3.1.3 Biosensing -- 11.3.1.3.1 Detection of Glucose -- 11.3.1.3.2 Detection of Biothiols -- 11.3.1.3.3 Detection of Adenosine Triphosphate (ATP) -- 11.3.1.3.4 Detection of Proteins -- 11.3.1.3.5 Detection of DNA -- 11.3.2 Bioimaging -- 11.3.2.1 Case Study with Fluorescent Au NCs -- 11.3.2.2 Case Study with Fluorescent Ag NCs -- 11.3.2.3 Case Study with Fluorescent Cu NCs -- 11.3.2.4 Case Study with Fluorescent Pt NCs -- 11.3.3 Antimicrobial Activity -- 11.3.4 Cancer Radiotherapy -- 11.4 SUMMARY AND PROSPECTS -- ACKNOWLEDGMENT -- REFERENCES -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- X -- Z -- Color Plates -- Back Cover. , English
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9948026798602882
    Umfang: 1 online resource (387 pages)
    ISBN: 0-12-812621-3 , 0-12-812620-5
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- 1 - Theodore Keeler's impact on transportation economics and policy -- 1 - Introduction -- 2 - Airlines -- 3 - Airports -- 4 - Railroads -- 5 - Trucking -- 6 - Automobile regulation -- 7 - Highway pricing and investment and resource allocation in urban transportation -- 8 - Remaining chapters -- References -- 2 - Theodore Keeler's analysis of the early effects of deregulation of US transportation industries -- Dedication -- 2.1 - Introduction -- 2.2 - Applied economic analysis -- 2.3 - Keeler's views on the forces for regulatory reform -- 2.4 - Aviation -- 2.5 - Long-haul freight transportation -- 2.6 - Conclusions -- References -- Further Reading -- 3 - Commoditization and segmentation of aviation markets -- 3.1 - Introduction -- 3.2 - Impact of entry by LCCs -- 3.3 - Airline business models -- 3.4 - Long-haul low cost -- 3.5 - Summary and conclusions -- Acknowledgements -- References -- Further Reading -- 4 - Mergers, efficiency, and productivity in the railroad industry: an attribute-incorporated data envelopment analysis... -- 4.1 - Introduction -- 4.2 - Productivity and efficiency -- 4.3 - Conceptual framework -- 4.3.1 - General setting and the distance function -- 4.3.2 - Malmquist productivity index -- 4.3.3 - Data envelopment analysis -- 4.3.4 - Attributes-incorporated Malmquist productivity index -- 4.4 - Data sources -- 4.5 - Empirical application -- 4.5.1 - Efficiency performance -- 4.5.2 - The mergers effect on the efficiency performance -- 4.5.3 - Decomposition of productivity -- 4.6 - Summary and conclusions -- 4.7 - Appendix A -- 4.8 - Appendix B -- 4.8.1 - Attributes-incorporated Malmquist productivity index -- References -- 5 - Policy in the deregulated and newly competitive railroad industry: a global analysis -- 5.1 - Introduction. , 5.2 - US competition policy issues -- 5.2.1 - Merger policy -- 5.2.2 - Recent US proposals to expand competitive access -- 5.2.3 - Antitrust exemption to expand competitive access? -- 5.3 - Competition policy issues in North America -- 5.3.1 - Vertical competitive effects in North American rail mergers -- 5.3.2 - Recent proposals in Mexico and Canada to expand competitive access -- 5.4 - Competition policy issues outside North America -- 5.5 - Summary and conclusion -- Acknowledgments -- References -- Further Reading -- 6 - Designing future merger policy in north american rail: lessons from the past? -- Dedicati on-James Nolan -- 6.1 - Introduction -- 6.2 - The turning point-an overview of the (failed) CNBN merger -- 6.3 - Qualitative data and analysis -- 6.3.1 - Interpreting qualitative information from the CNBN merger submissions -- 6.4 - Comparing merger information from yesterday to today -- 6.4.1 - Overview of rail merger concerns, as voiced today -- 6.5 - Conclusions -- Epilogue -- References -- Further Reading -- 7 - Ocean container shipping -- 7.1 - Introduction -- 7.2 - An historical overview of ocean container shipping -- 7.2.1 - Government investments -- 7.2.1.1 - Suez Canal -- 7.2.1.2 - Panama Canal -- 7.2.1.3 - Suez Canal Versus Panama Canal -- 7.2.1.4 - Nicaragua Canal -- 7.2.1.5 - Northern Sea Route -- 7.2.1.6 - One Belt One Road -- 7.2.2 - International trade policies -- 7.2.3 - Economic effects of ocean container shipping -- 7.3 - Ocean container shipping lines' business strategies in a changing economic environment -- 7.3.1 - Larger containerships -- 7.3.2 - Mergers and acquisitions -- 7.3.3 - Vessel-sharing alliances -- 7.4 - Containerization in the United States -- 7.4.1 - US double-stack train service -- 7.4.2 - US Transportation Regulatory Reform Acts -- 7.4.3 - US dockworkers -- 7.4.4 - US importers and exporters. , 7.4.5 - US Jones Act -- 7.5 - Conclusion -- References -- Further Reading -- 8 - Evolution of transportation policy and economics -- 8.1 - Introduction -- 8.2 - Highway infrastructure finance -- 8.3 - Impacts of a VMT tax -- 8.4 - Transit investment and subsidies -- 8.5 - Multimodal investment decision-making for freight -- 8.6 - Conclusions: the role of the economist -- References -- Further Reading -- 9 - Competing with the private sector: the welfare-maximizing response -- Dedication -- 9.1 - Introduction -- 9.2 - The model -- 9.2.1 - Spatial setting -- 9.2.2 - Commuters -- 9.2.3 - Entry and response -- 9.2.4 - Profit maximization -- 9.2.5 - Social welfare maximization -- 9.2.6 - Modal characteristics and operations plans -- 9.3 - Empirical parameters -- 9.3.1 - Commuter choice and characteristics -- 9.3.2 - Travel times -- 9.3.3 - Transit costs -- 9.4 - Results -- 9.4.1 - Entry and response: the base case -- 9.4.2 - Deficits and the welfare costs of nonoptimal responses -- 9.4.3 - Externalities -- 9.5 - Conclusions -- References -- 10 - Devolution of transportation: reducing big-government involvement in transportation decision making -- 10.1 - Introduction: the role of government in transportation -- 10.1.1 - Implications for this study -- 10.2 - The role of governance in transportation -- 10.2.1 - Political and territorial motivations -- 10.2.2 - National defense arguments -- 10.2.3 - Economic arguments -- 10.2.4 - Evaluating the case for devolution -- 10.3 - Transport propensities and devolution -- 10.3.1 - Passenger transportation -- 10.3.2 - Passenger transport trip lengths and modes of travel -- 10.3.3 - Freight transportation -- 10.3.4  Freight transportation shipping distances and modes used -- 10.4 - The implications for devolution -- 10.4.1 - The assignment of authority question -- 10.4.2 - The pricing question. , 10.4.3 - Highway pricing: the current Oregon setting -- 10.4.4 - Transit pricing: the current Oregon setting -- 10.4.5 - Other modes' pricing: the current Oregon setting -- 10.4.6 - The privatization question -- 10.4.7 - Privatization of Oregon highways -- 10.4.8 - Privatization of Oregon transit -- 10.4.9 - Privatization of Oregon air and water modes -- 10.5 - Conclusions -- References -- Further Reading -- 11 - The elusive effects of CAFE standards -- Dedication -- 11.1 - Introduction -- 11.2 - Modeling issues -- 11.2.1 - Consumer behavior and vehicle demand -- 11.2.1.1 - Consumer valuation of fuel economy -- 11.2.1.2 - Expectations of future fuel prices -- 11.2.1.3 - Rebound effect: sensitivity of vehicle-miles traveled to fuel economy -- 11.2.1.4 - Scrappage rates -- 11.2.1.5 - Manufacturer behavior -- 11.3 - The modified NEMS model -- 11.3.1 - Description of NEMS -- 11.3.2 - Modifications of NEMS -- 11.3.2.1 - Valuation of fuel economy -- 11.3.2.2 - Manufacturers' pricing and technology strategies -- 11.3.2.3 - Noncompliance -- 11.3.2.4 - Consumers' expectations of fuel prices -- 11.3.2.5 - Oil prices -- 11.3.3 - Remaining uncertainties -- 11.4 - Results -- 11.4.1 - Policy impacts of CAFE in the base scenario -- 11.4.2 - Effects of price adjustments -- 11.4.3 - Effects of consumer valuation of fuel price savings -- 11.4.4 - Effects of magnitudes of fines for noncompliance -- 11.4.5 - Effects of fuel price expectations -- 11.4.6 - Effects of fuel prices -- 11.4.7 - Non-footprint-based standards -- 11.4.8 - Impacts on manufacturing and fuel costs -- 11.4.8.1 - Change in the average manufacturing cost of a new car -- 11.4.8.2 - Change in fuel cost per 1000 miles traveled -- 11.4.8.3 - Comparisons among scenarios -- 11.5 - Conclusion -- Appendix A: Modifications of NEMS -- A.1 - Adding price responsiveness for manufacturers. , A.1.1 - Profit maximizing with elastic demand -- A.1.2 - Profit maximization to meet a CAFE constraint (single standard) -- A.1.3 - Footprint-based standards -- A.1.4 - Choice of fuel intensity (i.e. technology) -- A.1.4.1 - Without CAFE: -- A.1.4.2 - With CAFE (single standard): -- A.1.4.3 - With CAFE (footprint-based standard): -- A.1.4.4 - Fines in lieu of compliance: -- A.1.4.5 - Summary: -- A.1.5 - Overall summary of vehicle pricing and quality under CAFE -- A.2 - Adjusting coefficients in type choice model -- A.2.1 - Vehicle cost and fuel cost coefficients -- A.2.2 - Other coefficients -- A.3 - Optimization in the manufacturers' technology choice component (MTCC) -- Appendix B: Other simulations -- References -- Further Reading -- 12 - Broker/third party logistics provider and shipper responsibility in motor carrier selection: considering carrier sa... -- 12.1 - Introduction -- 12.2 - The dynamics of large truck fatal and injury crash rates -- 12.3 - FMCSA's programs to reduce the large truck fatal and injury crash rates -- 12.3.1 - Safety fitness rating -- 12.3.2 - SafeStat -- 3.3 - Compliance, safety, and accountability (CSA) 2010: safety measurement system (SMS) -- 12.3.4 - FAST Act and NAS/TRB Panel on Motor Carrier Safety Measurement -- 12.4 - Brokers/third party logistics providers -- 12.4.1 - Joint venture/partnership -- 12.4.2 - Control -- 12.4.3 - Reasonable care in selection of carriers -- 12.5 - Shippers -- 12.5.1 - Control -- 12.5.2 - Reasonable care in the selection of carriers -- 12.6 - Conclusions -- References -- Further Reading -- 13 - Sturdy inference and the amelioration potential for driverless cars: The reduction of motor vehicle fatalities due ... -- 13.1 - Introduction -- 13.2 - Background -- 13.3 - Data -- 13.4 - Classical econometric results. , 13.5 - Bayesian S-values and the determinants of motor vehicle fatality rates.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    UID:
    almahu_9949232525502882
    Umfang: 1 online resource (524 pages) : , illustrations (some color).
    ISBN: 0-08-100966-6
    Serie: Woodhead Publishing series in composites science and engineering
    Anmerkung: Front Cover -- Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications -- Copyright -- Dedication -- Contents -- List of contributors -- About the editors -- Chapter 1: Introduction to biomass and its composites -- 1.1 Biomass, source and its compositions -- 1.2 Utilization of biomass in different sectors -- 1.3 Biomass based polymer composites -- 1.4 Applications of biomass based polymer composites -- Acknowledgements -- References -- Chapter 2: Agro-industrial waste composites as components for rural buildings -- 2.1 Introduction -- 2.2 Particleboard with agroindustrial waste as components for rural buildings -- 2.2.1 Case Study 1: Particleboard with cement-bag and long-life packaging -- 2.2.1.1 Cement-bag panel production methodology -- 2.2.1.2 Physical and mechanical properties -- 2.2.1.3 Thermal properties -- Thermal conductivity and thermal resistance -- Emissivity -- 2.2.1.4 Cement-bag particleboards as ceiling material in rural buildings -- 2.2.2 Case Study 2: Particleboards with sugar cane bagasse -- 2.2.2.1 Production method -- 2.2.2.2 Physical and mechanical properties -- 2.2.2.3 Modular sugarcane bagasse particleboard panel applied to cattle handling facilities -- 2.3 Conclusion -- References -- Chapter 3: Predicting the potential of biomass-based composites for sustainable automotive industry using a decision-making... -- 3.1 Introduction -- 3.1.1 Environmental consciousness -- 3.1.2 Green biomass-based composites -- 3.2 Selection considerations -- 3.2.1 Processes and materials basics -- 3.2.2 Materials cost -- 3.3 Biomass composites characteristics and testing -- 3.3.1 Biomass composite characteristics -- 3.3.2 Testing of biomass composites -- 3.4 Materials selection -- 3.5 Biomass selection using a multi criteria decision making model -- 3.5.1 AHP model for biomass selection. , 3.5.2 Selecting natural fibers for composites using AHP -- 3.5.3 Pair-wise comparison pattern for the considered factors -- 3.5.4 Comparisons of alternatives -- 3.6 Future developments -- 3.7 Summary -- 3.8 Conclusions -- References -- Chapter 4: Biomass-based composites from different sources: Properties, characterization, and transforming biomass with ... -- 4.1 Introduction -- 4.2 Lignocellulosic biomass -- 4.2.1 Sources and classification -- 4.2.2 Chemical composition -- 4.3 Challenges in development of biomass based composites -- 4.3.1 Judicious selection of sustainable biomass -- 4.3.2 Critical factors for biomass processing -- 4.3.3 Moisture content of cellulosic fibers -- 4.3.4 Diffusion of the biomass fibers in the matrix -- 4.3.5 Biomass fiber-matrix interface -- 4.3.6 Thermal stability -- 4.3.7 Biodegradability -- 4.4 Biomass based composites -- 4.4.1 Cellulose based composites -- 4.4.2 Lignin-based composites -- 4.4.3 Seaweed polysaccharides based composites -- 4.4.4 Chitin and chitosan based composites -- 4.4.5 Silk protein based composites -- 4.5 Characterization of biomass based composites -- 4.5.1 Atomic force microscopy (AFM) -- 4.5.2 Differential scanning calorimetry (DSC) -- 4.5.3 Fourier transform infrared (FTIR) spectrometry -- 4.5.4 Thermo gravimetric analysis (TGA) -- 4.5.5 Tensile strength -- 4.6 Properties of biomass based composites -- 4.6.1 Physical properties -- 4.6.2 Mechanical properties -- 4.6.3 Thermal properties -- 4.6.4 Electrical properties -- 4.7 Application of biomass-based composites -- 4.8 Conclusions -- References -- Further reading -- Chapter 5: Rice husk and kenaf fiber reinforced polypropylene biocomposites -- 5.1 Introduction -- 5.2 Rice husk -- 5.3 Kenaf fibers -- 5.4 RH and KF biocomposites -- 5.4.1 PP/RH biocomposites -- 5.4.2 PP/kenaf biocomposites -- 5.5 Development and applications. , 5.6 Conclusion and future prospects -- Acknowledgment -- References -- Chapter 6: Thermal properties of oil palm biomass based composites -- 6.1 Introduction -- 6.2 Oil palm -- 6.3 Oil palm wastes biomass in Malaysia -- 6.4 Oil palm biomass -- 6.4.1 OPEFB fibers -- 6.4.2 Oil palm kernel shells -- 6.4.3 Oil palm ash -- 6.4.4 Oil palm frond -- 6.5 Polymer matrix -- 6.6 Polymer composites -- 6.6.1 Utilization of oil palm biomass in polymer composites -- 6.7 Thermal properties -- 6.8 Thermal properties of oil palm biomass reinforced thermoset polymer composites -- 6.9 Thermal properties oil palm biomass reinforced thermoplastic polymer composites -- 6.10 Thermal properties of oil palm biomass reinforced polymer nanocomposites -- 6.11 Applications of oil palm biomass and its polymer composites -- 6.12 Conclusion -- Acknowledgement -- References -- Chapter 7: Biomass-based nanocomposite for packaging applications -- 7.1 Introduction -- 7.2 Brief introduction to biomass based polysaccharides and proteins -- 7.2.1 Cellulose -- 7.2.2 Chitosan -- 7.2.3 Soy protein -- 7.3 Introduction to nano fillers -- 7.3.1 Nano clay -- 7.3.2 Nanoboron nitride -- 7.3.3 Nano silicon carbide -- 7.4 Method of synthesis -- 7.4.1 Materials -- 7.4.2 Fabrication techniques -- 7.4.3 Standard techniques used -- 7.5 Morphological analysis -- 7.6 FTIR analysis -- 7.7 XRD analysis -- 7.8 Thermal analysis -- 7.9 Gas barrier properties -- 7.10 Mechanical properties -- 7.11 Future perspective -- 7.12 Conclusion -- References -- Further Reading -- Chapter 8: Alfa and doum fiber-based composite materials for different applications -- 8.1 Introduction -- 8.2 Natural fibers properties (alfa and doum) -- 8.2.1 Chemical properties -- 8.2.2 Mechanical properties of natural fibers -- 8.2.3 Morphological properties of natural fibers (doum and alfa fibers). , 8.3 Critical issues in the processing of natural fiber-reinforced composites -- 8.3.1 Thermal stability of doum and alfa fiber -- 8.3.2 Dispersion of natural fibers in the polymer matrix -- 8.3.3 Interfacial adhesion between natural fiber and polymer matrix -- 8.4 Compounding method -- 8.5 Physico mechanical properties of fibers polymers matrix composites -- 8.6 Application of natural fibers composites -- 8.7 Conclusion and challenges -- References -- Chapter 9: Comprehensive approach on the structure, production, processing, and application of lignin -- 9.1 Introduction -- 9.2 Historical background of lignin -- 9.3 Biomass -- 9.4 Major constituents of lignocellulose -- 9.4.1 Cellulose -- 9.4.2 Hemicellulose -- 9.4.3 Lignin -- 9.5 Chemical composition and structure of lignin -- 9.6 Different lignin types based on extraction techniques -- 9.7 Modification of lignin -- 9.7.1 No chemical modification -- 9.7.2 Chemical treatment -- 9.7.2.1 Preparation of new chemical active sites -- 9.7.2.2 Depolymerization/fragmentation -- 9.7.2.3 Hydroxyl group treatment -- 9.8 Applications of lignin -- 9.9 Conclusions -- Acknowledgment -- References -- Chapter 10: Fabrication of composites reinforced with lignocellulosic materials from agricultural biomass -- 10.1 Introduction -- 10.2 Biomass composition of agricultural residues -- 10.3 Extraction of cellulose from agricultural residue -- 10.4 Composites reinforced with lignocellulosic materials from agricultural residue -- 10.4.1 Agricultural residue-polymer composite -- 10.5 Conclusion and future prospect -- References -- Chapter 11: Mechanical properties of lignocellulosic fiber composites -- 11.1 Introduction -- 11.1.1 Prediction of mechanical properties -- 11.2 Factors affecting the mechanical properties of LFCs -- 11.2.1 Fiber -- Materials -- Measurement conditions -- 11.2.2 Matrix. , 11.2.3 Fiber/matrix interfacial bonding -- 11.2.4 Manufacturing -- 11.3 Mechanical properties -- 11.3.1 Testing techniques -- 11.3.2 Stress-strain response and damage mechanisms -- 11.3.3 Lignocellulosic fiber reinforced thermosets and thermoplastics -- 11.3.3.1 Tensile properties -- 11.3.3.2 Flexural properties -- 11.3.3.3 Impact properties -- 11.3.3.4 Fatigue properties -- 11.3.3.5 Effects of fiber surface treatments on mechanical properties -- 11.3.3.6 Environmental effects on mechanical properties -- 11.3.4 Lignocellulosic fiber reinforced biopolymers -- 11.3.5 Natural fiber/synthetic fiber hybrid composites -- 11.3.6 Biomass-based nanocomposites -- 11.4 Conclusions -- References -- Chapter 12: Tribological properties of biomass-based composites -- 12.1 Introduction -- 12.2 Composite materials based on natural fibers -- 12.3 Tribo-polymeric composites -- 12.4 Natural fibre reinforced polymer composite -- 12.5 Material selection and experimental procedure -- 12.5.1 Kenaf fiber reinforced epoxy -- 12.6 Experimental procedure -- 12.6.1 Pin on ring machine -- 12.7 Tribological experiments -- 12.8 Results and discussion -- 12.8.1 Abrasive wear of KFRE composite -- 12.8.2 Proposed wear mechanisms -- 12.8.3 Normal orientation (N-O) -- 12.8.4 Parallel orientation (P-O) -- 12.8.5 Anti parallel orientations (AP-O) -- 12.8.6 Optical microscopy of the abrasive papers -- 12.8.6.1 SiC abrasive paper grade 2000 (2000G) -- 12.8.6.2 SiC abrasive paper grade 1500 (1500G) -- 12.8.6.3 SiC abrasive paper grade 1000 (1000G) -- 12.8.6.4 SiC abrasive paper grade 400 (400G) -- 12.9 Conclusion -- References -- Further Reading -- Chapter 13: Bamboo: Potential material for biocomposites -- 13.1 Introduction to bamboo -- 13.2 The bamboo morphological characteristic -- 13.2.1 The bamboo rhizome -- 13.2.2 The bamboo culm. , 13.2.2.1 The macroscopic characteristic of bamboo culm.
    Weitere Ausg.: ISBN 0-08-100959-3
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    almahu_9948025666902882
    Umfang: 1 online resource (497 pages) : , illustrations
    ISBN: 0-323-42890-8
    Anmerkung: Front Cover -- Nanobiomaterials in Dentistry -- Copyright Page -- Contents -- List of contributors -- Preface of the series -- Preface -- About the Series (Volumes I-XI) -- About Volume XI -- 1 Nanobiomaterials in dentistry -- 1.1 Introduction -- 1.2 Nanomedicine -- 1.3 Nanobiomaterials Used in Dentistry -- 1.3.1 Photoactivated Restorative Nanomaterials Used in Dentistry -- 1.3.2 Nanosolutions -- 1.3.3 Esthetic Materials -- 1.3.4 Nano-Optimized Moldable Ceramics -- 1.3.5 Impression Materials -- 1.3.6 Nanoencapsulation -- 1.3.7 Other Products Manufactured -- 1.3.8 Materials to Induce Bone Growth -- 1.3.9 Nanoneedles -- 1.3.10 Self-Assembly -- 1.3.11 Nanomaterials for Periodontal Drug Delivery -- 1.3.12 Photodynamic Therapy -- 1.3.13 Implants -- 1.3.14 Dental Nanorobots -- 1.3.15 Nanocomposite Artificial Teeth -- 1.3.16 Dental Tissues and Nanostructures -- 1.3.17 Digital Dental Imaging -- 1.3.18 Applications of Nanotechnology in Oral and Maxillofacial Surgery -- 1.3.19 Nanotechnology for Preventing Dental Caries -- 1.3.19.1 Gold nanoparticles -- 1.3.19.2 Silver nanoparticles -- 1.3.19.3 Zinc oxide nanoparticles -- 1.3.19.4 Titanium dioxide nanoparticles -- 1.4 Conclusions -- References -- 2 Understanding dental implants -- 2.1 Introduction -- 2.2 Types of Dental Implants -- 2.2.1 Trends in Dental Implants Biomaterials -- 2.2.1.1 Ancient period (through AD 1000) to present -- 2.2.1.2 Polymers and composites -- 2.2.1.3 Metals and metal alloys -- 2.2.1.4 Titanium and its alloys Ti-6Al-4V -- 2.2.1.5 Ceramics -- 2.2.1.6 Zirconia -- 2.2.1.7 Carbon compounds -- 2.2.1.8 Titanium-zirconium alloy (Straumann Roxolid) -- 2.2.2 Dental Implant Configurations -- 2.2.2.1 Subperiosteal implants -- 2.2.2.2 The vitreous carbon implant -- 2.2.2.3 Blade-vent implants -- 2.2.2.4 The single-crystal sapphire implant -- 2.2.2.5 The Tübingen aluminum ceramic implant. , 2.2.2.6 The TCP-implant -- 2.2.2.7 The TPS-screw -- 2.2.2.8 The ITI hollow-cylinder implant -- 2.2.2.9 The IMZ dental implant -- 2.2.2.10 The core-vent titanium alloy implant -- 2.2.2.11 The transosteal, mandibular staple bone plate -- 2.2.2.12 The Brånemark osseointegrated titanium implant -- 2.2.3 Design and Technology in Dental Implantology -- 2.3 Dental Postimplantation Complications -- 2.3.1 Biofilms and Implant-Associated Infections -- 2.3.2 Avoiding Postsurgical Complications -- 2.4 Conclusions -- References -- 3 Effect of titanium dioxide nanoparticle on proliferation, drug-sensitivity, inflammation, and metabolomic profiling of hu... -- 3.1 Introduction -- 3.2 Chemical and Physical Properties of TiO2 NPs -- 3.3 Uses of TiO2 and TiO2 NPs -- 3.4 Nanotoxicology and Hormetic Response -- 3.5 Toxicity of TiO2 NPs in Dentistry -- 3.5.1 Lower Cytotoxicity of Ti Plates as Compared to Dental Metals -- 3.5.2 Cytotoxicity TiO2 NP Oral-Cultured Cells -- 3.5.3 Pro-Inflammatory Action of TiO2 NPs -- 3.5.4 Incorporation of TiO2 NPs in Oral Cells -- 3.5.5 Exploring Intracellular Target Molecules of TiO2 NPs -- 3.5.6 Exploring Anti-Inflammatory Substances that Target TiO2 NPs -- 3.6 Future Direction -- 3.7 Conclusions -- References -- 4 Biocements with potential endodontic use -- 4.1 Introduction -- 4.2 Synthesis and in vitro Bioactivity of Dicalcium Silicate and Tricalcium Aluminate -- 4.2.1 Synthesis and Characterization of Dicalcium Silicate -- 4.2.2 Synthesis and Characterization of Tricalcium Aluminate -- 4.2.3 In vitro Bioactivity of Dicalcium Silicate and Tricalcium Aluminate -- 4.3 Sol-Gel Synthesis, in vitro Bioactivity and Biological Assay of MTA Cements -- 4.3.1 Sol-Gel Synthesis of White Mineral Aggregate and Partial Stabilized Cement -- 4.3.2 In vitro Bioactivity and Biological Assay of White Mineral Aggregate and Partially Stabilized Cement. , 4.4 Conclusions -- References -- 5 Nanobiomaterials in restorative dentistry -- 5.1 Introduction -- 5.2 Composite Resin -- 5.2.1 Nanocomposites -- 5.2.2 Antibacterial Nanoparticles and Composite Resins -- 5.2.2.1 Applications of antibacterial nanoparticles in composite resins -- 5.2.3 Remineralization and Composite Resins -- 5.3 Adhesives -- 5.4 Dental Cements and Dental Liners -- 5.4.1 Glass Ionomer Cements -- 5.4.2 Resin Cements -- 5.4.3 Mineral Trioxide Aggregate -- 5.4.4 Temporary Restorative Materials -- 5.5 Conclusions -- References -- 6 New trends, challenges, and opportunities in the use of nanotechnology in restorative dentistry -- 6.1 Introduction -- 6.2 Restorative Dentistry Nanomaterials -- 6.2.1 Dental Nanocomposites -- 6.2.1.1 Resin-based composites -- 6.2.2 Nanofilled -- 6.2.2.1 Silica nanoparticles -- 6.2.3 Nanocrystals -- 6.2.4 Nanoparticles -- 6.2.4.1 Metal nanoparticles -- 6.2.4.2 Polymeric nanoparticles -- 6.2.4.3 Nonpolymeric nanoparticles -- 6.3 New Trends in Restorative Dentistry -- 6.4 Actual Clinic Situation -- 6.5 Conclusions -- 6.6 Future Trends -- References -- 7 Antimicrobial effect of nanoparticles in endodontics -- 7.1 Introduction -- 7.1.1 Endodontics -- 7.1.2 Endodontic Microbiology -- 7.2 Difficulty in Achieving Complete Eradication of Endodontic Pathogens -- 7.2.1 Complexity of Microorganisms -- 7.2.2 Limitations of Cleaning and Shaping Protocols -- 7.2.3 Anatomic Complexity -- 7.3 Need for Nanotechnology in Endodontics -- 7.4 Applications of Antimicrobial Nanoparticles in Endodontics -- 7.4.1 Commonly Used Nanoparticles in Endodontics -- 7.4.2 Nanoparticles as Irrigants -- 7.4.3 Nanoparticles as Intracanal Medicaments -- 7.4.4 Nanoparticles as Obturation Materials -- 7.4.5 Nanoparticle-Based Photodynamic Therapy -- 7.4.6 Nanomodification of Materials for Perforation Repair and Apical Seal -- 7.5 Conclusions. , References -- 8 Nanotechnology in dentistry -- 8.1 Introduction -- 8.2 A Short History about Caries Treatment Before Dental Composites -- 8.3 Historical Development of Dental Composites -- 8.4 Vision in Dentistry From Micro- to Nanoscale -- 8.5 Nanotechnology in Restorative Dentistry -- 8.5.1 Nano-Concept in Restorative Dentistry -- 8.5.1.1 Nanofills -- 8.5.1.2 Nanohybrids -- 8.5.2 Other Nanomaterials Mixed with Dental Composites -- 8.5.3 Future Predictions -- 8.6 Nanotechnology in Periodontics -- 8.6.1 Periodontal Treatment Procedures -- 8.6.2 Future Aspects of Nanotechnology in Periodontics -- 8.7 Nanotechnology in Orthodontics -- 8.7.1 Orthodontic Nanocomposites -- 8.7.2 Nanotechnologic Enamel-Remineralizing Agents -- 8.7.3 Nanocoated Orthodontic Archwire -- 8.7.4 Nanotechnologic Orthodontic Brackets -- 8.7.5 Orthodontic Nanorobots and Furtherance -- 8.8 Nanotechnology in Endodontics -- 8.8.1 Nanoparticles as Antimicrobial Agents -- 8.8.2 Nanotechnology-Based Root-End Sealant -- 8.8.3 Future Aspects of Nanotechnology in Endodontics -- 8.9 Conclusions -- Acknowledgements -- References -- 9 Role of nanomaterials in clinical dentistry -- 9.1 Introduction -- 9.1.1 Nanostructures Used in Dentistry -- 9.1.2 Oral Health Care -- 9.1.3 Oral Diseases -- 9.1.4 Dental Plaque -- 9.1.5 Etiophysiology of Dental Caries -- 9.1.6 Biofilm Definition -- 9.1.7 Biofilm Composition -- 9.1.8 Role of Biofilms -- 9.1.9 Types of Biofilm -- 9.2 Role of Nanomaterials in Clinical Dentistry -- 9.2.1 Oral Hygiene and Halitosis -- 9.2.2 Mouth Rinse -- 9.2.3 Chlorhexidine -- 9.2.4 CHX Varnish Therapy -- 9.2.5 Role of Calcium -- 9.2.6 Chitosan -- 9.2.7 NPs in Dentifrice -- 9.2.8 Tooth Whitening/Bleaching -- 9.2.9 HA as Surface Defect Filler -- 9.3 Dentin Hypersensitivity -- 9.3.1 Nanorestorative Materials: Pulp-Capping Agent -- 9.3.2 Nanozinc Oxide -- 9.3.3 Silver Amalgam. , 9.3.4 Silver NPs -- 9.3.5 Ceramic Materials -- 9.3.6 NPs of Zirconia -- 9.3.7 Nanoesthetic Filling Materials -- 9.3.8 Dental Composite -- 9.3.9 Recent Advances -- 9.4 Bonding System -- 9.4.1 Nanoionomer -- 9.4.2 Prereacted Glass-Ionomer -- 9.4.3 Dental Implants -- 9.4.4 Esthetics and Tooth Durability -- 9.4.5 Laser and NPs -- 9.4.6 Nanocare Gold -- 9.4.7 Endodontics -- 9.4.8 Drug-Delivery System -- 9.4.9 Impression Materials -- 9.5 Nanoneedles -- 9.5.1 Nanotweezers -- 9.5.2 Surgical Devices -- 9.5.3 Nanorobotics -- 9.5.4 Nanodiagnostics -- 9.5.5 Healing of Wounds -- 9.5.6 Nano-Orthodontics -- 9.5.7 Tissue Engineering -- 9.5.8 Bone-Replacement Materials -- 9.6 Future Challenges -- 9.7 Conclusions -- References -- 10 Use of nanotechnology for the superlubrication of orthodontic wires -- 10.1 Introduction -- 10.2 Nanotechnology -- 10.2.1 "Top-Down" or "Bottom-Up" Approaches -- 10.2.2 Nanomaterials -- 10.2.3 Nanorobots -- 10.3 Nanomedicine -- 10.4 Nanotechnology in Dentistry -- 10.4.1 Application of Nanotechnology in Diagnosis and Treatment -- 10.4.2 Nanocomposite in Restorative Dentistry -- 10.4.3 Nanotechnology for Preventing Dental Caries -- 10.4.4 Nanorobotic Dentrifices (Dentifrobots) -- 10.4.5 Hypersensitivity Cure -- 10.4.6 Nanosolutions (Nanoadhesives) -- 10.4.7 Tissue Engineering and Dentistry -- 10.4.8 Replacing Teeth -- 10.4.9 Prosthodontics -- 10.4.10 Dental Implants' Modified Surfaces -- 10.4.11 Bone Replacement Materials -- 10.4.12 Nanoanesthesia -- 10.4.13 Impression Materials -- 10.4.14 Nanoneedles -- 10.4.15 Nanocomposite Denture Teeth -- 10.4.16 Cosmetic Dentistry -- 10.4.17 Nanotechnology in Endodontics -- 10.4.18 Nanoencapsulation -- 10.4.19 Digital Dental Imaging -- 10.4.20 Radiopacity -- 10.4.21 Surface Disinfectants -- 10.4.22 Laser Plasma Application -- 10.5 Nanotechnology in Orthodontics. , 10.5.1 Nanocoatings for Friction Reduction.
    Weitere Ausg.: ISBN 0-323-42867-3
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949225588002882
    Umfang: 1 online resource (470 pages)
    ISBN: 0-12-818976-2
    Anmerkung: Includes index. , Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- Best Use of Methods Offered Here -- Other Resources - Consultants, Vendors, Couses and Videos -- Training Resources Available for Fluid Mixing Technology -- Appendix 1.1: Fluid mixing courses -- Appendix 1.2: Videos - YouTube and IndustrialMixing Handbooks -- YouTube Videos -- Acknowledgements -- REFERENCES -- Chapter 2 Impeller fundamentals -- Dimensionless Parameters -- Flow and Shear -- Torque per unit volume -- Impeller Pumping Efficiency -- Power-producing Flow and Power-producing Shear -- Radial Flow Impellers -- EXAMPLE PROBLEM 2.1. Viscous Syrup Bending with a Side Entering Agitator in a 30 kgal Tank -- Problem Statement -- Problem Solution -- EXAMPLE PROBLEM 2.2. Viscous Syrup Blending with Propeller Pump in a 30 kgal Tank -- REFERENCES -- Chapter 3 Equipment selection -- Introduction -- "Economy of Scale" is Increasing the Size and Complexity of Agitators -- A Historical Perspective -- Seventy-Five Years Ago -- Forty Years Ago -- Twenty Years Ago (the mid-1990s) -- Move Ahead to Today -- Examples of Impeller Improvements from the 1970s to Today -- Fundamentals for Effective Selection of Fluid Mixing Equipment -- The Standard Geometry -- Flow and Shear -- EXAMPLE PROBLEM 3.1. Making Lye Soap in the Laboratory and in 55 gal (200 L) Drums -- EXAMPLE PROBLEM 3.2. Selecting a Commercially Available Agitator -- EXAMPLE PROBLEM 3.3. Impeller Selection/Power Requirements -- Agitator Vendors: Websites and Videos -- REFERENCES -- Chapter 4 Impeller power and pumping -- Impeller Power Requirements -- Standard Impeller Speeds -- Variable Frequency Drives -- Power Correlations for Standard Impeller Geometries -- Impeller Pumping Correlations -- EXAMPLE PROBLEM 4.1. P, Q, tto, tb -- 6BD in 3 m Fully Baffled Vessel. , "Economy of Scale" is Increasing the Size and Complexity of Agitators -- EXAMPLE PROBLEM 4.3. Pumping Rate: HE-3 Impeller Compared to the Performance of the 6BD of Example 4.2 -- EXAMPLE PROBLEM 4.4. HE-3 Impeller Compared to the Performance of the 6BD of Example 4.3 at the Same N -- REFERENCES -- Chapter 5 Vortex depth -- Introduction -- Unbaffled Vessels -- Rotating Liquid in a Cylinder (Solid Body Rotation of a Liquid in a Cylinder) -- Comparison of Solid Body Rotation with an Earlier Correlation for Two-bladed Flat Paddles -- Correlations for Vortex Depth for Unbaffled Vessels -- Anchor Impeller in Unbaffled Vessel -- EXAMPLE PROBLEM 5.1. Vortex Depth in an Unbaffled Vessel with an Anchor Agitator -- Partially Baffled Vessels -- EXAMPLE PROBLEM 5.2. Prediction of the Vortex Depth for the Experimental Conditions Utilized for the Data Presented in Fig. 5.3 -- Selection of Impeller, Baffling, and Geometry to Minimize to Have the Vortex Reach the Impeller -- Power Decrease Due to Partial Baffling -- Selection of Optimum Geometry to Maximize Vortex Depth at Minimum Impeller Power -- REFERENCES -- Chapter 6 Tank blending -- Experimental Methods -- Visual Determination -- Colorimetric Methods and Image Processing -- Transient Measurement of Salt Concentration after Injection of a Volume of Tracer Salt Solution -- Transient Measurement of Temperatures after Starting an Impeller in a Temperature Stratified Tank -- Correlation for Predicting Blending Uniformity -- Blending in the Transition and Laminar Flow Regime (NRe, ≈≤ 100) -- Blend Time for Multiple Impellers -- EXAMPLE 6.1. BATCH BLENDING WITH AN HE-3 IMPELLER -- EXAMPLE PROBLEM 6.2. BLENDING WITH A HELICAL RIBBON IMPELLER -- REFERENCES -- Chapter 7 Pipeline mixing -- Introduction -- Selection and Design Considerations -- Pressure Drop -- Blending Considerations -- Mixing Indices. , Revelations Regarding the Validity of Blending Correlations -- COVr for Tee Mixers -- Drop or Bubble Size for Turbulent Flow Pipeline Mixers -- EXAMPLE PROBLEM 7.1. Solute/Solvent Dispersion-Example Problem 7.3 [3, p. 452-454] -- EXAMPLE PROBLEM 7.2. COV for a Square Duct -- EXAMPLE PROBLEM 7.3. COV for a Kenics HEM Static Mixer -- EXAMPLE PROBLEM 7.4. Mixing Air and Ammonia Feeding a Nitric Acid Plant -- REFERENCES -- Chapter 8 Heat transfer -- About this Chapter -- Introduction -- Options for Heat Transfer Surfaces -- Design Methods for the Utility Side of Heat Transfer Devices -- Heat Transfer Capability of Various Heat Transfer Surfaces -- Most Effective Geometry for Internal Surface -- Heat Transfer Coefficients -- Transient Heat-up or Cooldown Time -- EXAMPLE PROBLEM 8.1. Overall Coefficient and Heat-up Time for a Water Batch -- EXAMPLE PROBLEM 8.2. Overall Coefficient and Heat-up Time for a Water Batch/Coil -- EXAMPLE PROBLEM 8.3. Helical Ribbon h and Heat-up Time for a Viscous Batch -- EXAMPLE PROBLEMS 8.4a-8.4d. Various Utility Side Configurations - Open Jacket with Agitation Nozzles, Dimpled Jacket and Multiple Internal Helical Coils -- REFERENCES -- Chapter 9 Solids suspension -- Introduction -- Solids Suspension Correlations -- Off-bottom Suspension Correlations -- Homework Problem 9.2: Solve Example Problem 10-3.4.3 from Brown et al. [3, p. 383] -- HOMEWORK PROBLEM 9.3: Check the Experimental Results of Chowdhury's [2, p. 171] Run No. 258 -- REFERENCES -- Chapter 10 Dissolving solids -- Introduction -- Just Suspended Speed -- Correlation for Particle Mass Transfer Coefficient (k) -- Predictive Methods for Determining Particle Dissolving Time -- EXAMPLE PROBLEM 10.1. Checking the Kulov Experimental Data for τ with the DesignMethod -- EXAMPLE PROBLEM 10.2. Check Nienow and Miles' Experimental Dissolving Time Data with Correlational Results. , EXAMPLE PROBLEM 10.3. Dissolving Time Results for 3 mm Ice Cream Salt in a 1000 gal Vessel -- REFERENCES -- Chapter 11 Gas-liquid dispersions -- Introduction -- Impeller Selection -- Industrial Importance of Gas-Liquid Mixing -- What Will be Considered Here? -- Back to the Fundamentals of Gas Dispersion in Agitated Vessels -- Ungassed Power Requirement -- Gassed Power Requirement -- Impeller Flooding -- Gas Holdup -- Mass Transfer Coefficient -- Gas Dispersion from the Vessel Headspace -- EXAMPLE PROBLEM 11.1. Check of one experimental data point from Saravanan and Joshi [12] to verify (1) the units of Qg are L/s and (2) the accuracy of the correlation -- EXAMPLE PROBLEM 11.2. Oxygenate Johnson Creek at the Johnson Mill, Fayetteville, AR -- EXAMPLE PROBLEM 11.3. Batch Stripping of Oxygen from a Water Batch using Sparged Nitrogen -- REFERENCES -- References of General Reviews -- Chapter 12 Liquid-liquid dispersions -- Introduction -- Literature Survey -- Impeller Selection -- What is Needed to Design/Evaluate Agitators for L/L Dispersions -- Design Methods -- Which Phase is Dispersed? -- EXAMPLE PROBLEM 12.1. Suspension of 50% Sulfuric Acid in Benzene -- Correlations for Predicting Drop Size -- Equilibrium Drop Size -- Transient Drop Size Variation -- Mass Transfer -- EXAMPLE PROBLEM 12.2. Data Reduction for Dahhan's [22] Data - Run Number 5 -- EXAMPLE PROBLEM. 12.3. Agitated Vessel to Saturate Water with Chlorobenzene -- Consideration of the Dispersed Phase Resistance -- Final Comments Regarding L/L Dispersion in Agitated Vessels -- REFERENCES -- Chapter 13 Compartmented agitated columns -- Introduction -- Design Methods Included in This Chapter -- Vendors -- Explanation of Mechanical Details -- Design Methods -- Interstage Backmixing with Zero Forward Flow -- Entrainment -- Reactor Model Development. , EXAMPLE PROBLEM 13.1. Saponification of Ethylchloroacetate in a 10 Stage, Agitated, Compartmented Column -- Input (Feed) Variables for the Chemical Reactor (See Attached Excel Program, Sheet 4) -- Output (Effluent) Variables for the Chemical Reactor (SEE attached Excel Program, Sheet 4) -- Geometry-related Parameters (Input and Calculated) -- Flow-related Parameters -- Agitation Parameters -- Reaction Parameters -- Historical Footnote -- REFERENCES -- Chapter 14 Fast competitive/consecutive (C/C) chemical reactions -- Introduction -- Where Do We Start? Two Examples of Feed Blending Problems -- Step-By-Step Guide for Education About Handling C/C Reactions -- Literature Review -- Kinetics of C/C Fast Reactions -- Review of the Literature Pertinent to Scale up -- Scale up of Pipeline Mixers Used for Fast C/C Fast Reactions -- Simple Guidelines -- Final Thoughts and Recommendations -- REFERENCES -- BOOKS AND REVIEW PAPERS -- KINETICS OF C/C FAST REACTIONS -- SCALE UP OF C/C FAST CHEMICAL REACTIONS -- Chapter 15 Scale up -- Introduction -- Scale up of Process Results in Agitated Vessels -- Scale-up Analysis Using Geometrical Similarity -- EXAMPLE PROBLEM 15.1. Making Wallpaper Paste in 4 L and 200 L Vessels -- EXAMPLE PROBLEM 15.2. Scale down of Example Problem 11.2-Aeration of Johnson Creek -- EXAMPLE 15.3. Heat Transfer in Pigment Binder Reactors -- EXAMPLE PROBLEM 15.4. Scale up of the Pigment Binder Reaction to Handle Feed Blending -- EXAMPLE PROBLEM 15.5. Scale up of the APG Reactor from 1 L to 40,000 L -- EXAMPLE PROBLEM 15.6. Scale Down of a 0.4mDiameter L-L Static Mixer Required to Satisfy the Requirements of Example 2 from Streiff et al. [17] -- Original Problem Statement -- EXAMPLE PROBLEM 15.7. Scale up of the Third Bourne Reaction in a Semibatch Agitated Reactor. , EXAMPLE PROBLEM 15.8. Scale up of a StaticMixer Reactor for the Fourth Bourne Reaction from 1/8 to 1 diameter.
    Weitere Ausg.: ISBN 0-12-818975-4
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz