Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949232410802882
    Format: 1 online resource (xix, 423 pages). : , illustrations.
    Series Statement: Woodhead publishing series in energy
    Note: Front Cover -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles -- Woodhead Titles -- Other Related Elsevier Titles -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power CyclesWoodhead Publishing Series in Energy ... -- Copyright -- Contents -- List of contributors -- The Editors -- Acknowledgments -- Foreword -- Overview -- Overview -- Key Terms -- 1. Introduction -- 2. Brayton cycles based on CO2 as the working fluid -- 3. Recompression indirect-fired Brayton cycle -- 4. Recompression supercritical CO2 Brayton cycle versus Rankine cycle -- 5. Semiclosed direct-fired oxyfuel Brayton cycle -- 6. Brayton cycles based on other supercritical fluids -- References -- 1 - Introduction and background -- Overview -- Key Terms -- 1.1 Introduction -- 1.2 Overview of supercritical CO2 power cycle fundamentals -- 1.2.1 Cycle machinery and balance of plant -- 1.2.1.1 Turbomachinery -- 1.2.1.2 Heat exchangers -- 1.2.1.3 Bearings and seals -- 1.2.1.4 Balance of plant -- Generators, motors, and gear systems -- Generators -- Gearbox systems -- Piping and skids -- System layout and control issues -- 1.3 Applications for sCO2 power cycles -- 1.3.1 Waste heat recovery -- 1.3.2 Concentrated solar power -- 1.3.3 Fossil fuel power plants -- 1.3.4 Nuclear plants -- 1.3.5 Bulk energy storage, geothermal sCO2 power plants, and biofuel plants -- 1.4 Summary and conclusions -- References -- 2 - Physical properties -- Overview -- Key Terms -- 2.1 Introduction -- 2.2 Qualities of supercritical CO2 -- 2.3 Equations of state for calculating supercritical CO2 properties -- 2.3.1 Categories of equations of state -- 2.3.2 Available software -- 2.3.3 Common equations of state used in software -- 2.3.4 Issues with using equations of state for supercritical CO2. , 2.3.5 Experimental data for supercritical CO2 properties -- 2.4 Overview of thermodynamic property trends -- 2.5 Impurities of CO2 mixtures -- 2.6 Summary -- References -- 3 - Thermodynamics -- Overview -- Key Terms -- 3.1 Introduction -- 3.2 Governing relationships -- 3.2.1 Conservation of mass and energy -- 3.2.2 Entropy and the second law of thermodynamics -- 3.2.3 Exergy and irreversibility -- 3.3 Analysis -- 3.3.1 Turbomachinery -- 3.3.2 Ducts and piping -- 3.3.3 Heat exchangers -- 3.4 Example applications -- 3.4.1 Simple recuperated cycle -- 3.4.2 Recompression cycle -- 3.5 Conclusions -- References -- 4 - High-temperature materials -- Overview -- Key Terms -- 4.1 Introduction -- 4.1.1 Alloy creep limitations -- 4.1.2 Creep of thin-walled components -- 4.1.3 High-temperature oxidation -- 4.2 Thermodynamics of oxidation -- 4.3 Investigations of high-temperature corrosion in ambient and subcritical CO2 -- 4.4 Laboratory investigations of supercritical CO2 corrosion rates and reaction products -- 4.4.1 Idaho National Laboratory -- 4.4.2 Japan Atomic Energy Agency -- 4.4.3 Centre dEtudes Atomiques -- 4.4.4 Massachusetts Institute of Technology -- 4.4.5 University of Wisconsin -- 4.4.6 Carleton University/Natural Resources Canada -- 4.4.7 Sandia National Laboratory -- 4.4.8 Korea Advanced Institute for Science and Technology -- 4.4.9 Oak Ridge National Laboratory -- 4.4.10 Commonwealth Scientific and Industrial Research Organisation -- 4.4.11 Effect of impurities on corrosion rates in supercritical CO2 -- 4.5 Effect of CO2 on mechanical properties -- 4.6 Current status and ongoing supercritical CO2 work -- 4.7 Future directions -- 1. Define materials limits, including mechanical effects -- 2. Testing in flowing sCO2 -- 3. Effect of impurities on corrosion at high temperature -- 4. Materials for advanced heat exchangers. , 5. Alloy/coating development for sCO2 -- 6. Formation of an sCO2 consortium -- 4.8 Conclusions -- Acknowledgments -- References -- 5 - Modeling and cycle optimization -- Overview -- Key Terms -- 5.1 Introduction to cycle modeling -- 5.2 Basics of cycle modeling -- 5.2.1 Fluid properties -- 5.2.2 Coolers and heaters -- 5.2.3 Recuperators -- 5.2.4 Turbomachinery -- 5.2.5 Piping and valves -- 5.3 Design point analysis -- 5.3.1 Cycle comparison -- 5.3.2 Impact of cycle temperatures -- 5.4 Considerations for off-design modeling -- 5.4.1 Turbomachinery -- 5.4.2 Recuperators -- 5.4.3 Valves -- 5.5 Advanced considerations for steady-state modeling -- 5.6 Cycle optimization -- 5.7 Transient code requirements -- 5.7.1 Effects of system scale -- 5.7.2 Example of a transient analysis code -- 5.8 Conclusion -- References -- 6 - Economics -- Overview -- Key Terms -- 6.1 Introduction (advantages and disadvantages in potential markets) -- 6.2 Potential markets -- 6.2.1 Industrial waste heat recovery -- 6.2.2 Concentrated solar power -- 6.2.3 Fossil fuel power plants -- 6.2.4 Nuclear plants -- 6.2.5 Bulk energy storage and geothermal supercritical CO2 power plants -- 6.3 Introduction to the economics of supercritical CO2 power plants -- 6.3.1 Levelized cost of electricity -- 6.3.2 Internal rate of return -- 6.3.3 Net present value -- 6.4 Project cost basis -- 6.4.1 Recuperator -- 6.4.2 Supercritical CO2 gas chiller -- 6.4.3 Waste heat recovery unit -- 6.4.4 Turbomachinery plus other component BOP costs -- 6.4.5 Gas turbine cost -- 6.4.6 Supercritical CO2 bottoming cycle cost estimate -- 6.5 Summary and conclusions of supercritical CO2 power system economics -- References -- 7 - Turbomachinery -- Overview -- Key Terms -- 7.1 Introduction -- 7.2 Machinery configurations -- 7.2.1 Radial/axial -- 7.2.2 Generator connection and gearing configurations. , 7.2.3 Dual or single shaft -- 7.3 Existing supercritical CO2 turbomachinery designs -- 7.3.1 Existing prototypes -- 7.3.1.1 The 100-kWe-scale demonstration prototypes -- 7.3.1.2 The 250-kWe to 8-MWe-Scale commercial prototypes (Echogen) -- 7.3.1.3 General Electric/Southwest Research Institute 10-MWe-scale prototype -- 7.3.2 Turbomachinery in literature -- 7.3.2.1 Angelino (1968) 1000-MWe turbine -- 7.3.2.2 Dostal et al. (2004) 246-MWe turbomachinery -- 7.3.2.3 Gas Technology Institute 10/550/645/1000-MWe turbomachinery -- 7.3.2.4 Toshiba 25-MW direct-fired turbine -- 7.3.2.5 GE/SwRI 50 and 450-MWe trains -- 7.3.2.6 Hanwha Techwin/SwRI integrally geared compander -- Case study: 20-MWe recompression cycle -- 7.4 Common design attributes and components -- 7.4.1 Bearings -- 7.4.1.1 High surface speeds -- 7.4.1.2 High unit loading -- 7.4.2 Rotordynamics -- 7.4.2.1 Introduction to rotordynamic instability -- 7.4.2.2 Cross-coupling in annular seals and secondary flow passages -- 7.4.2.3 Shaft axial length -- 7.4.2.4 Rotordynamics case study: 20-MWe supercritical CO2 expander -- 7.4.3 Shaft end seals -- 7.4.3.1 Dry gas seals -- 7.4.3.2 Floating ring oil seals -- 7.4.4 Pressure containment -- 7.4.4.1 Static seals -- 7.4.5 Starting -- 7.4.6 Integration with load control -- 7.5 Compressor and pump design considerations for supercritical CO2 -- 7.5.1 Impeller mechanical design -- 7.5.2 Aerodynamic performance -- 7.5.2.1 Aerodynamic design: 20-MWe case study -- 7.5.3 Surge control -- 7.6 Turbine design considerations for supercritical CO2 -- 7.6.1 Overspeed risk -- 7.6.2 Thermal management -- 7.6.3 Thermal transient effects on pressure containment (challenges, liner concept, other concepts) -- 7.6.4 Turbine rotor/blade mechanical design -- 7.6.5 Turbine aerodynamic performance -- 7.7 Summary -- References -- 8 - Heat exchangers -- Overview -- Key Terms. , 8.1 Introduction -- 8.2 Applications in supercritical CO2 power cycles -- 8.2.1 Heaters -- 8.2.2 Recuperators -- 8.2.3 Coolers -- 8.3 Candidate architectures -- 8.3.1 Shell and tube -- 8.3.2 Microtube -- 8.3.3 Printed circuit -- 8.3.4 Plate fin -- 8.3.5 Emerging designs -- 8.4 Operating conditions and requirements -- 8.4.1 Operating temperature -- 8.4.2 Operating pressure -- 8.4.3 Transient operation -- 8.4.4 Emergency shutdown operation -- 8.5 Design considerations -- 8.5.1 Life and durability -- 8.5.2 Maintenance -- 8.5.3 Cost -- 8.5.4 Heat exchanger design fundamentals -- 8.5.4.1 Thermal performance and heat transfer -- Correlations and empirical results -- 8.5.4.2 Hydraulic performance -- 8.6 Design validation -- 8.6.1 Thermal-hydraulic performance -- 8.6.2 Strength testing -- 8.6.3 Creep testing -- 8.6.4 Fatigue testing -- 8.7 Conclusion -- References -- 9 - Auxiliary equipment -- Overview -- Key Terms -- 9.1 CO2 supply and inventory control systems -- 9.2 Filtration -- 9.3 Dry gas seal supply and vent system -- 9.4 Instrumentation -- 9.5 Summary -- References -- 10 - Waste heat recovery -- Overview -- Key Terms -- 10.1 Introduction -- 10.2 Waste heat recovery overview -- 10.2.1 Quality of heat and system efficiency -- 10.2.2 Quantity of heat and potential energy -- 10.2.3 Waste heat temperature -- 10.3 Waste heat recovery applications -- 10.3.1 Glass manufacturing -- 10.3.2 Steel manufacturing -- 10.3.3 Cement manufacturing -- 10.3.4 Gas turbine engine -- 10.3.5 Reciprocating engine -- 10.4 Waste heat exchanger design -- 10.5 Economics and competitive assessment -- 10.6 Technology development needs -- References -- 11 - Concentrating solar power -- Overview -- Key Terms -- 11.1 Motivation for integrating supercritical CO2 into CSP systems -- 11.1.1 Concentrating solar power's role in a renewable energy future. , 11.1.2 General concentrating solar power attributes and the benefits of supercritical CO2 to CSP.
    Additional Edition: ISBN 0-08-100804-X
    Additional Edition: ISBN 0-08-100805-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    almahu_9948212094102882
    Format: 1 online resource (562 pages)
    ISBN: 0-12-818114-1 , 0-12-818113-3
    Note: Includes index. , Front Cover -- Decommissioning Forecasting and Operating Cost Estimation: Gulf of Mexico Well Trends, Structure Inventory and Forecast Models -- Copyright -- Contents -- Acknowledgment -- Abbreviations and Units -- Box list -- Executive Summary -- Overview -- Organization -- Outline -- Highlights -- Data and Statistics -- Units -- References -- Part One: Overview -- Chapter One: Production and Active Inventories -- 1.1. The Setting -- 1.1.1. Gulf of Mexico -- 1.1.2. Shelf vs. Slope -- 1.1.3. State vs. Federal Waters -- 1.1.4. Shallow Water vs. Deepwater -- 1.1.5. Sigsbee Escarpment -- 1.1.6. Outer Continental Shelf Lands Act -- 1.1.7. Protraction Areas -- 1.2. Production -- 1.3. Active Inventory -- 1.4. Stock Changes -- 1.5. Trends -- 1.5.1. Shallow Water -- 1.5.2. Deepwater -- 1.6. Oil vs. Gas Structures -- 1.7. Production Status -- 1.7.1. Classification -- 1.7.2. Shallow Water -- 1.7.3. Deepwater -- References -- Chapter Two: Structure Classification -- 2.1. Structure Type -- 2.1.1. Shallow Water -- 2.1.2. Deepwater -- Fixed Platforms -- Compliant Towers -- Floaters -- 2.2. Manned Structures -- 2.3. Multi-Structure Complexes -- 2.4. Production Status -- 2.4.1. Producing Structures -- 2.4.2. Auxiliary Structures -- 2.4.3. Idle Structures -- 2.5. Number of Wells -- 2.6. Hub Platforms -- 2.6.1. Classification -- 2.6.2. Process and Export Capacity -- 2.6.3. First Generation Hubs -- 2.6.4. Second Generation Hubs -- References -- Chapter Three: Installation and Decommissioning Activity -- 3.1. Cumulative Activity -- 3.1.1. Shallow Water -- 3.1.2. Deepwater -- 3.2. Shallow Water Trends -- 3.2.1. Annual Activity -- 3.2.2. Installation by Decade -- 3.2.3. Decommissioning by Decade -- 3.3. Deepwater Trends -- 3.3.1. Annual Activity -- 3.3.2. Installation by Decade -- 3.3.3. Decommissioning by Decade -- References -- Chapter Four: Economic Limit Factors. , 4.1. Operating Cost Characteristics -- 4.2. Cash Flow Model -- 4.3. General Considerations -- 4.3.1. Reserves Application -- 4.3.2. Production Beyond Economic Limit Is Not Reserves -- 4.3.3. Strategic Factors Complicate Interpretation -- 4.3.4. Proxy for Commercial Operations -- 4.4. Factor Description -- 4.4.1. Structure Type -- 4.4.2. Water Depth -- 4.4.3. Oil vs. Gas -- 4.4.4. Manned Status -- 4.4.5. Operator -- 4.4.6. Well Type -- 4.4.7. Intervention Frequency -- 4.4.8. Other Factors -- 4.5. Flow Assurance -- 4.5.1. Issues -- 4.5.2. Subsea Production System Design -- 4.5.3. Hydrates -- 4.5.4. Waxes -- 4.5.5. Asphaltenes -- 4.5.6. Inorganic Scale -- References -- Chapter Five: Reserves and Resources -- 5.1. Prospects, Plays, Fields and Reserves -- 5.2. Geologic Time -- 5.3. Gulf of Mexico Geology -- 5.3.1. Formation -- 5.3.2. Shallow Water (Modern Shelf) -- 5.3.3. Deepwater (Modern Slope) -- 5.4. Field Reserves -- 5.4.1. Data Source -- 5.4.2. Cumulative Production and Reserves -- 5.4.3. Field Counts and Reserves -- 5.4.4. Creaming Curves -- 5.4.5. Reserves vs. Production -- 5.4.6. Field-Size Distribution -- 5.4.7. Largest Fields -- 5.4.8. Field-Size Distribution Shift -- 5.5. Reserves Growth -- 5.6. Undiscovered Resources -- References -- Part Two: Well Trends and Structure Inventory -- Chapter Six: Well Trends -- 6.1. Well Type -- 6.2. Wells Spud -- 6.3. Exploration Wells -- 6.4. Development Wells -- 6.5. Abandoned Wells -- 6.6. Producing and Idle Wells -- 6.7. Subsea Completions -- References -- Chapter Seven: Shallow-Water Structure Inventory -- 7.1. Producing Structures -- 7.1.1. 2017 Revenue -- 7.1.2. Total Primary Production -- 7.1.3. Total Cumulative Primary Production -- 7.1.4. Future Dynamics -- 7.2. Idle Structures -- 7.2.1. Idle Inventory -- 7.2.2. Idle Age -- 7.2.3. Idle Age at Decommissioning -- 7.3. Auxiliary Structures. , Chapter Eight: Shallow-Water Economic Limit Statistics -- 8.1. Methodology -- 8.1.1. Revenue Model -- 8.1.2. Categorization -- 8.1.3. Sample -- 8.1.4. Exclusions -- 8.1.5. Adjusted Gross Revenue -- 8.2. Distributions -- 8.2.1. Oil vs. Gas Structures -- 8.2.2. Structure Type and Manned Status -- 8.3. Time Trends -- 8.3.1. Structures -- 8.3.2. Oil vs. Gas Structures -- 8.3.3. Water Depth -- 8.3.4. Moving Time Windows -- 8.4. Factor Model -- 8.4.1. Model Specification -- 8.4.2. Results and Discussion -- 8.5. Limitations -- 8.5.1. Generalization -- 8.5.2. Gross Revenue Approximation -- 8.5.3. Structure Classification -- 8.5.4. Interpretation -- 8.5.5. For All Other Things Equal -- 8.5.6. Independence -- 8.5.7. Aggregation and Categorization -- References -- Chapter Nine: Deepwater Structure Inventory -- 9.1. Floater Equipment Capacity -- 9.2. Floater Capacity-Reserves Statistics -- 9.2.1. Capacity-to-Reserves Ratio -- 9.2.2. Capacity-to-Reserves Statistics -- 9.3. Well Type -- 9.4. Production -- 9.5. Gross Revenue -- 9.6. Reserves -- 9.7. PV-10 -- 9.8. Fixed Platforms, 400-500ft -- 9.8.1. Idle -- 9.8.2. Gross Revenue 500ft -- 9.9.1. Idle -- 9.9.2. Gross Revenue 1000 Million -- References -- Chapter Ten: Deepwater Economic Limit Statistics -- 10.1. Methodology -- 10.1.1. Revenue Model -- 10.1.2. Primary Product -- 10.1.3. Adjusted Gross Revenue. , 10.2. Decommissioned Structures -- 10.2.1. Sample -- 10.2.2. Aggregate Economic Limits -- 10.2.3. Economic Limits by Structure Type -- 10.3. Bottom Hole Flowing Pressure -- 10.4. Subsea Well Intervention -- 10.5. Permanently Abandoned Wells -- 10.5.1. Sample -- 10.5.2. Exclusions -- 10.5.3. Dry Tree vs. Wet Tree -- 10.5.4. Water Cuts -- 10.5.5. Oil vs. Gas Wells -- 10.5.6. Wet Tree Wells -- Distance to Host -- Elevation Difference -- 10.6. Limitations -- References -- Part Three: Decommissioning Forecast -- Chapter Eleven: Methodology and Parameterization -- 11.1. Introduction -- 11.1.1. Overview -- 11.1.2. Challenges -- 11.1.3. Shallow Water vs. Deepwater -- 11.2. Model Framework -- 11.2.1. Producing Structures -- 11.2.2. Idle Structures -- 11.2.3. Auxiliary Structures -- 11.3. Producing Structure Decommissioning Model -- 11.3.1. Oil Wells vs. Gas Wells -- 11.3.2. Commodity Prices -- 11.3.3. Well Forecasting -- 11.3.4. Constant Reservoir and Investment Conditions -- 11.3.5. Gross Revenue -- 11.3.6. Structure Production -- 11.3.7. Net Revenue -- 11.3.8. Economic Limit -- 11.3.9. Abandonment and Decommissioning Time -- 11.4. Idle Structure Decommissioning Schedule Model -- 11.4.1. Parameter Models -- 11.4.2. Scenarios -- 11.4.3. Model Equations -- 11.4.4. Normalization -- 11.5. Auxiliary Structure Decommissioning Schedule Model -- 11.6. Installed Structures -- References -- Chapter Twelve: Two Examples -- 12.1. Tick and Ladybug -- 12.1.1. Development (Fig. 12.1) -- 12.1.2. Structure Production (Figs. 12.2 and 12.3) -- 12.1.3. Well Inventory (Table 12.1, Fig. 12.4) -- 12.1.4. Sidetrack Production (Fig. 12.5) -- 12.1.5. Subsea Production (Fig. 12.6) -- 12.1.6. Decline Curve Specification (Table 12.2) -- 12.1.7. Primary Production Forecast (Table 12.3) -- 12.1.8. CGOR and CCGR Trends (Fig. 12.7) -- 12.1.9. Secondary Product Forecast (Table 12.4). , 12.1.10. Structure Production Forecast (Fig. 12.8) -- 12.1.11. Net Revenue Forecast (Table 12.5) -- 12.1.12. Economic Limit Year Sensitivity (Table 12.6) -- 12.1.13. Proved Reserves Sensitivity (Table 12.7) -- 12.1.14. Reserves Valuation Sensitivity (Table 12.8) -- 12.1.15. Postscript Circa 2018 -- 12.2. Horn Mountain -- 12.2.1. Development (Fig. 12.9) -- 12.2.2. Structure Production (Figs. 12.10 and 12.11) -- 12.2.3. Well Inventory (Table 12.9, Fig. 12.12) -- 12.2.4. Decline Curve Specification (Table 12.10) -- 12.2.5. Primary Production Forecast (Table 12.11) -- 12.2.6. CGOR Trends (Figs. 12.12 and 12.13) -- 12.2.7. Secondary Production Forecast (Table 12.12) -- 12.2.8. Structure Production Forecast (Fig. 12.14) -- 12.2.9. Revenue Forecast (Table 12.13) -- 12.2.10. Economic Limit Sensitivity (Table 12.14) -- 12.2.11. Reserves Sensitivity (Table 12.15) -- 12.2.12. Reserves Valuation Sensitivity (Table 12.16) -- References -- Chapter Thirteen: Shallow Water Decommissioning Forecast -- 13.1. Model Recap -- 13.2. Producing Structure Decommissioning Forecast -- 13.2.1. Reference Case -- 13.2.2. Sensitivity Analysis -- 13.2.3. Hyperbolic vs. Exponential Decline Curve -- 13.2.4. Price Variation -- 13.2.5. Economic Limit Variation -- 13.2.6. Oil vs. Gas Structures -- 13.2.7. Commodity Price Adjustment -- 13.2.8. Royalty Relief -- 13.3. Hybrid Model Scenarios -- 13.3.1. Notation -- 13.3.2. Scenario Parameterization -- 13.3.3. Decommissioning Scenarios -- 13.3.4. Class Transitions -- 13.4. Active Inventory Scenario -- 13.5. Discussion -- 13.6. Limitations -- References -- Chapter Fourteen: Deepwater Decommissioning Forecast -- 14.1. Model Recap -- 14.2. Decommissioning Forecast -- 14.2.1. Producing Structures -- 14.2.2. Model Scenarios -- 14.2.3. Sensitivity Analysis -- 14.3. Active Structure Forecast -- 14.4. Limitations -- References. , Part Four: Critical Infrastructure Issues.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newcastle upon Tyne, England :Cambridge Scholars Publishing,
    UID:
    almafu_9961373779802883
    Format: 1 online resource (345 pages) : , illustrations
    Edition: 1st ed.
    ISBN: 1-4438-9625-X
    Content: Birthing the Computer: From Drums to Cores examines the evolution of computer systems architecture based on two evolutionary developments: memory technology - magnetic drums to magnetic cores - and CPU technology - transistors. This evolution, exemplified by a number of academic and commercial computing machines, yielded significant performance improvements and more storage leading to more effective utilization. These features would drive the development of programming languages and system software that would enhance the usability of the machines to solve more complex problems in both business, government, and scientific domains. The machines described in this volume represent the leading edge of the transition to second generation computer systems. They introduce a number of key technology concepts in computer architecture and system software that are found in every computer system today, albeit in a more modern form.
    Note: Intro -- Table of Contents -- List of Figures -- List of Tables -- Acknowledgement -- Introduction -- Part I: Magnetic Drum Machines -- Chapter One -- 1.1 650 System Architecture -- 1.1.1 Magnetic Drum Memory -- 1.1.2 Arithmetic Unit -- 1.1.3 IBM 650 Self-Checking -- 1.1.4 IBM 650 Console -- 1.1.5 Magnetic Tape Units -- 1.1.6 IBM 652 Control Unit -- 1.1.7 IBM 653 High-Speed Core Storage Unit -- 1.1.8 IBM 407 Accounting Machine -- 1.2 IBM 650 Instruction Set -- 1.2.1 I/O Instructions -- 1.2.2 Arithmetic Instructions -- 1.2.3 Shifting Instructions -- 1.2.4 Branching Instructions -- 1.2.5 Table Lookup Instruction -- 1.2.6 Miscellaneous Instructions -- 1.2.7 Index Accumulator Instructions -- 1.2.8 Index Accumulator Operations Instructions -- 1.2.9 Floating Point Instructions -- 1.2.10 IAS Instruction -- 1.3 IBM 650 Programming -- 1.4 Symbolic Assembly -- 1.5 IBM 650 RAMAC -- 1.6 IBM 650 Assessment -- Chapter Two -- 2.1 LGP-30 System Architecture -- 2.2 LGP-30 Instruction Set -- 2.3 The Story of Mel -- 2.4 LGP-30 Assessment -- 2.5 The LGP-21 -- 2.5.1 LGP-21 System -- 2.5.2 LGP-21 Memory -- 2.5.3 LGP-21 Control Registers -- 2.6 LGP-21 Instruction Set -- 2.7 Timing and Optimization -- 2.8 LGP-21 Assessment -- Chapter Three -- 3.1 Bendix G-15 -- 3.2 G-15 System Configuration -- 3.2.1 Short Lines -- 3.2.2 Registers -- 3.2.3 Command Lines -- 3.2.4 I/O System -- 3.3 G-15 Instruction Set -- 3.3.1 Special Values for S/D Fields -- 3.3.2 Special Instructions -- 3.4 Peripheral Devices -- 3.4.1 Magnetic Tape MTA-2 -- 3.4.2 Digital Differential Analyzer DA-1 -- 3.4.3 Graph Plotter PA-3 -- 3.4.4 Punched Card Coupler CA-1/CA-2 -- 3.4.5 Universal Code Accessory AN-1 -- 3.5 Programming Languages -- 3.5.1 ALGO -- 3.5.2 Intercom 1000 -- 3.5.3 Sample G-15 Program -- 3.6 Tracking Station Application -- 3.7 G-15 Assessment -- Further Reading -- Exercises for the Reader. , Part II: Core Memory Machines -- Chapter Four -- 4.1 BIZMAC System Architecture -- 4.2 BIZMAC I/O System -- 4.3 Data Representation -- 4.4 BIZMAC Instruction Set -- 4.5 BIZMAC Assessment -- Chapter Five -- 5.1 Atlas System Architecture -- 5.1.1 Central Processor -- 5.1.2 Program Control -- 5.1.3 Storage Hierarchy -- 5.1.4 Virtual Storage -- 5.2 Peripherals -- 5.3 Atlas Instruction Set -- 5.3.1 Floating Point Arithmetic Instructions -- 5.3.2 Indexing Operations -- 5.3.3 Atlas Branching Instructions -- 5.3.4 Atlas Shifting Instructions -- 5.3.5 Atlas Odd/Even test Instructions -- 5.3.6 Atlas B-test Register Instructions -- 5.3.7 Atlas Instruction Example -- 5.4 Atlas Programming -- 5.5 The Atlas Supervisor -- 5.5.1 Structure of the Atlas Supervisor -- 5.5.2 Job Structure -- 5.5.3 Programs -- 5.5.4 Process Control -- 5.5.5 Interrupt Handling -- 5.5.6 Atlas Supervisor Assessment -- 5.6 Atlas 2 -- 5.6.1 Atlas 2 Central Processor -- 5.6.2 Atlas 2 Memory -- 5.6.3 Magnetic Tape -- 5.6.4 Magnetic Disc Files -- 5.7 The Atlas 2 Supervisor -- 5.7.1 Interrupt Routines -- 5.7.2 Supervisor Extracode Routines -- 5.7.3 Extended Interrupt Routines -- 5.7.4 Object Programs -- 5.7.5 Error Conditions -- 5.8 Atlas Assessment -- Chapter Six -- 6.1 JOHNNIAC System Architecture -- 6.2 JOHNNIAC System Configuration -- 6.3 JOHNNIAC Instruction Set -- 6.3.1 Conditional Transfer Orders -- 6.3.2 Transfer Orders -- 6.3.3 Add Orders -- 6.3.4 Multiply Operations -- 6.3.5 Division Orders -- 6.3.6 Store Orders -- 6.3.7 Register Movement Orders -- 6.3.8 Shift Orders -- 6.3.9 Input/Output Orders -- 6.3.10 Drum Orders -- 6.3.11 Logical Product Orders -- 6.3.12 Control Orders -- 6.4 JOHNNIAC Operation -- 6.5 JOSS -- 6.5.1 JOSS Structure -- 6.5.2 JOSS Remote Console -- 6.5.3 JOSS Implementation -- 6.6 JOHNNIAC Assessment -- Further Reading -- Exercises for the Reader. , Part III: Transistor Machines -- Chapter Seven -- 7.1 Solid State Computer Architecture -- 7.1.1 SSC Central Processor -- 7.1.2 Magnetic Drum -- 7.1.3 Operator's Console -- 7.2 SSC80/SSC90 Instructions -- 7.2.1 Executing an Instruction -- 7.2.2 Arithmetic Instructions -- 7.2.3 Transfer Instructions -- 7.2.4 Logical and Shift Instructions -- 7.2.5 Comparison Instructions -- 7.2.6 Translate Instructions -- 7.2.7 SS80 Printer Control Instructions -- 7.2.8 Card Reader Control Instructions -- 7.3 SSC Peripherals -- 7.4 Solid State Computer System Software -- 7.4.1 FLOW-MATIC -- 7.5 SSC Assessment -- Chapter Eight -- 8.1 UNIVAC 418-I -- 8.2 UNIVAC 418 System Architecture -- 8.3 Instruction Format -- 8.3.1 Type I Instructions -- 8.3.2 Type II Instructions -- 8.3.3 Type III Instructions -- 8.4 System Software -- 8.5 UNIVAC 418-II -- 8.6 UNIVAC 418-III -- 8.6.1 UNIVAC 418-III System Architecture -- 8.6.2 Command/Arithmetic Unit (CAU) -- 8.6.3 Main Storage -- 8.6.4 I/O Modules (IOMs) -- 8.6.5 Magnetic Drums -- 8.6.6 Attached Processors -- 8.6.7 Communications Systems -- 8.6.8 Unit Record Peripherals -- 8.7 UNIVAC 418 System Software -- 8.7.1 RTOS Executive -- 8.7.2 Programming Languages -- 8.7.3 System Applications -- 8.8 UNIVAC 418-III Application -- 8.8 UNIVAC 418 Assessment -- Chapter Nine -- 9.1 UNIVAC 494 -- 9.1 System Architecture -- 9.1.1 Central Processor -- 9.1.2 Memory -- 9.1.3 I/O System -- 9.1.4 Communications Handling -- 9.1.5 Transfer Switch -- 9.2 Instruction Set -- 9.2.1 Shift Instructions -- 9.2.2 UNIVAC 494 Transfer Instructions -- 9.2.3 Arithmetic Instructions -- 9.2.4 Logical Instructions -- 9.2.5 Comparison Instructions -- 9.2.6 Jump Instructions -- 9.2.7 Sequence Modifying Instructions -- 9.2.8 I/O Instructions -- 9.3 Peripherals -- 9.3.1 Magnetic Drums -- 9.3.2 Magnetic Tape Subsystem -- 9.3.3 Operator's Console. , 9.3.4 High-Speed Printer Subsystem -- 9.4 UNIVAC 490/494 System Software -- 9.4.1 Primary Input Stream -- 9.4.2 Input Cooperative -- 9.4.3 Programming Languages -- 9.5 UNIVAC 490/494 Assessment -- Chapter Ten -- 10.1 TX-0 System Architecture -- 10.1.1 TX-0 Registers -- 10.1.2 Toggle Switch Storage -- 10.1.3 Main Memory -- 10.2 TX-0 Instructions -- 10.2.1 TX-0 Operate Instructions -- 10.2.2 Combining Instructions -- 10.2.3 Modified Instruction Set -- 10.3 Operating Modes -- 10.4 TX-0 I/O Equipment -- 10.5 FLIT -- 10.6 TX-1 -- 10.7 TX-2 -- 10.7.1 TX-2 System Architecture -- 10.8 TX-0 and TX-2 Assessment -- Chapter Eleven -- 11.1 Philco 1000 -- 11.1.1 Philco 1000 Central Processor -- 11.1.2 Philco 1000 System Architecture -- 11.1.3 Instruction Set -- 11.2 Philco TRANSAC S-2000 -- 11.3 TRANSAC S-2000 System Architecture -- 11.3.1 Secondary Memory -- 11.4 TRANSAC S-2000 Instruction Set -- 11.4.1 Program Control -- 11.4.2 Instruction Control -- 11.4.3 Algorithm Control -- 11.4.4 Floating Point Control -- 11.4.5 Memory Cycle Control -- 11.5 Philco 212 -- 11.5.1 Control Unit -- 11.5.2 Instruction Unit -- 11.5.3 Index Unit -- 11.5.4 Arithmetic Unit -- 11.5.5 Store Unit -- 11.5.6 I/O Subsystem -- 11.5.7 Real-Time System -- 11.5.8 Philco 212 Instruction Set -- 11.6 Operating System 32KSYS -- 11.7 TRANSAC S-2000 Software -- 11.8 Philco 2400 Input/Output System -- 11.8.1 Philco 2400 System Architecture -- 11.8.2 Executive Control -- 11.8.3 Program Control -- 11.8.4 Arithmetic Element -- 11.8.5 Main Memory -- 11.8.6 Operator Control Panel -- 11.8.7 Philco 2400 Instruction Set -- 11.8.8 I/O Operations -- 11.8.9 Internal Operations -- 11.8.10 Arithmetic Operations -- 11.8.11 Philco 2400 I/O Devices -- 11.9 Assessment of the Philco Machines -- Chapter Twelve -- 12.1 Bendix G-20 System Architecture -- 12.1.1 Arithmetic Unit -- 12.1.2 Registers -- 12.1.3 Core Memory. , 12.1.4 Interrupts -- 12.2 Instruction Set Architecture -- 12.2.1 Add/Subtract Operations and Tests -- 12.2.2 Logic Operations and Tests -- 12.2.3 Repeated Commands -- 12.2.4 Multiply/Divide -- 12.2.5 Storage Operations -- 12.2.6 Index Operations -- 12.2.7 Control Operations -- 12.2.8 I/O Operations -- 12.2.9 Bus Register Operations -- 12.3 I/O System -- 12.4 G-21 Dual Processor -- 12.4.1 G-21 Software -- 12.5 Bendix G-20 Assessment -- Chapter Thirteen -- 13.1 PB250 System Architecture -- 13.1.1 Central Processor -- 13.1.2 Main Memory -- 13.1.3 Flexowriter -- 13.1.4 Other I/O Devices -- 13.1.5 HYCOMP 250 -- 13.2 PB250 Commands -- 13.2.1 Class I Commands -- 13.2.2 Class II Commands -- 13.2.3 Class III Commands -- 13.2.4 Class IV Commands -- 13.2.5 Sequence Tag -- 13.3 Packard Bell 440 -- 13.3.1 PB440 System Architecture -- 13.3.2 Memory System -- 13.3.3 I/O System -- 13.3.4 PB440 Programming -- 13.4 PB440 Micro Instruction Format -- 13.5 Packard Bell Assessment -- Further Reading -- Exercises for the Reader -- Appendix A: Glossary -- References -- Index.
    Additional Edition: ISBN 1-4438-8511-8
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almafu_9959328683802883
    Format: 1 online resource (xv, 543 pages) : , illustrations
    ISBN: 0471727164 , 9780471727163 , 9780471723424 , 0471723428 , 0471727172 , 9780471727170
    Content: Annotation Delivering the best possible solution for phase noise and output power efficiency in oscillatorsThis complete and thorough analysis of microwave oscillators investigates all aspects of design, with particular emphasis on operating conditions, choice of resonators and transistors, phase noise, and output power. It covers both bipolar transistors and FETs. Following the authors' guidance, readers learn how to design microwave oscillators and VCOs that can be tuned over a very wide frequency range, yet have good phase noise, are low cost, and are small in size. All the essential topics in oscillator design and development are covered, including:* Device and resonator technology* Study of noise sources* Analysis methods* Design, calculation, and optimization methodologies* Practical design of single and coupled oscillatorsWhile most of the current literature in the field concentrates on classic design strategies based on measurements, simulation, and optimization of output power and phase noise, this text offers a unique approach that focuses on the complete understanding of the design process. The material demonstrates important design rules starting with the selection of best oscillator topology, choice of transistors, and complete phase noise analysis that leads to optimum performance of all relevant oscillator features. Also included are CMOS oscillators, which recently have become important in cellular applications. For readers interested in specialized applications and topics, a full chapter provides all the necessary references. The contents of the text fall into two major categories:* Chapters 1 through 9 deal with a very detailed and expanded single resonator oscillator, including a thorough treatment of both nonlinear analysis and phase noise* Chapters 10 and 11 use the knowledge obtained and apply it to multiple coupled oscillators (synchronized oscillators)This text is partially based on research sponsored by the Defense Advanced Research Projects Agency (DARPA) and the United States Army and conducted by Synergy Microwave Corporation. With the wealth of information provided for the analysis and practical design of single and synchronized low-noise microwave oscillators, it is recommended reading for all RF microwave engineers. In addition, the text's comprehensive, step-by-step approach makes it an excellent graduate-level textbook.
    Note: THE DESIGN OF MODERN MICROWAVE OSCILLATORS FOR WIRELESS APPLICATIONS; CONTENTS; Foreword; Preface; Biographies; 1 Introduction; 1.1 Organization; 2 General Comments on Oscillators; 2.1 Sinusoidal Oscillators; 2.2 Phase Noise Effects; 2.3 Specifications of Oscillators and VCOs; 2.4 History of Microwave Oscillators; 2.5 Three Approaches to Designing Microwave Oscillators; 2.6 Colpitts Oscillator, Grounded Base Oscillator, and Meissen Oscillator; 2.7 Three-Reactance Oscillators Using Y-Parameters: An Introduction; 2.8 Voltage-Controlled Oscillators (VCOs); 3 Transistor Models; 3.1 Introduction , 3.2 Bipolar Transistors3.3 Field-Effect Transistors (FETs); 3.4 Tuning Diodes; 4 Large-Signal S-Parameters; 4.1 Definition; 4.2 Large-Signal S-Parameter Measurements; 5 Resonator Choices; 5.1 LC Resonators; 5.2 Microstrip Resonators; 5.3 Ceramic Resonators; 5.4 Dielectric Resonators; 5.5 YIG-Based Resonators; 6 General Theory of Oscillators; 6.1 Oscillator Equations; 6.2 Large-Signal Oscillator Design; 7 Noise in Oscillators; 7.1 Linear Approach to the Calculation of Oscillator Phase Noise; 7.2 The Lee and Hajimiri Noise Model , 7.3 Nonlinear Approach to the Calculation of Oscillator Phase Noise7.4 Phase Noise Measurements; 7.5 Support Circuits; 8 Calculation and Optimization of Phase Noise in Oscillators; 8.1 Introduction; 8.2 Oscillator Configurations; 8.3 Oscillator Phase Noise Model for the Synthesis Procedure; 8.4 Phase Noise Analysis Based on the Negative Resistance Model; 8.5 Phase Noise Analysis Based on the Feedback Model; 8.6 2400 MHz MOSFET-Based Push-Pull Oscillator; 8.7 Phase Noise, Biasing, and Temperature Effects; 9 Validation Circuits; 9.1 1000 MHz CRO , 9.2 4100 MHz Oscillator with Transmission Line Resonators9.3 2000 MHz GaAs FET-Based Oscillator; 9.4 77 GHz SiGe Oscillator; 9.5 900-1800 MHz Half-Butterfly Resonator-Based Oscillator; 10 Systems of Coupled Oscillators; 10.1 Mutually Coupled Oscillators Using the Classical Pendulum Analogy; 10.2 Phase Condition for Mutually Locked (Synchronized) Coupled Oscillators; 10.3 Dynamics of Coupled Oscillators; 10.4 Dynamics of N-Coupled (Synchronized) Oscillators; 10.5 Oscillator Noise; 10.6 Noise Analysis of the Uncoupled Oscillator , 10.7 Noise Analysis of Mutually Coupled (Synchronized) Oscillators10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators; 10.9 N-Push Coupled Mode (Synchronized) Oscillators; 10.10 Ultra-Low-Noise Wideband Oscillators; 11 Validation Circuits for Wideband Coupled Resonator VCOs; 11.1 300-1100 MHz Coupled Resonator Oscillator; 11.2 1000-2000/2000-4000 MHz Push-Push Oscillator; 11.3 1500-3000/3000-6000 MHz Dual Coupled Resonator Oscillator; 11.4 1000-2000/2000-4000 MHz Hybrid Tuned VCO; References; Appendix A Design of an Oscillator Using Large-Signal S-Parameters
    Additional Edition: Print version: Rohde, Ulrich L. Design of modern microwave oscillators for wireless applications. Hoboken, NJ : J. Wiley, 2005
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books. ; Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    b3kat_BV047688649
    Format: 1 online resource (385 pages)
    ISBN: 9783962671785
    Note: Description based on publisher supplied metadata and other sources , Intro -- Einleitung -- Warum wir Statistik brauchen -- Die Welt in Daten verwandeln -- Statistik als Unterrichtsfach -- Dieses Buch -- 1. Kapitel -- Die Dinge ins richtige Verhältnis setzen - Kategoriale Daten und Prozentzahlen -- 2. Kapitel -- Zahlen zusammenfassen und kommunizieren. Große Zahlenmengen -- 3. Kapitel -- Warum schauen wir uns die Daten überhaupt an? Populationen und Messverfahren -- 4. Kapitel -- Was führt zu was? -- 5. Kapitel -- Beziehungen mittels Regression modellieren -- 6. Kapitel -- Algorithmen, Analytik und Vorhersage -- 7. Kapitel -- Wie sicher kennen wir die Wirklichkeit? Schätzer und Intervalle -- 8. Kapitel -- Wahrscheinlichkeit - die Sprache der Unsicherheit und der Streuung -- 9. Kapitel -- Wahrscheinlichkeit meets Statistik -- 10. Kapitel -- Fragen, Antworten und Entdeckungen -- 11. Kapitel -- Auf Bayessche Art aus Erfahrungen lernen -- 12. Kapitel -- Was schiefgehen kann -- 13. Kapitel -- Wie können wir Statistik besser machen -- 14. Kapitel -- Fazit -- Dank -- Über den Autor -- Glossar -- Abbildungsverzeichnis -- Tabellenverzeichnis -- Anmerkungen -- Index -- Tabelle 1.1: Ausgänge der Operationen an Kinderherzen -- Tabelle 1.2: Methoden zur Kommunikation des Lebenszyklusrisikos von Darmkrebs bei Speckessern -- Tabelle 2.1: Zusammenfassende statistische Werte zur Anzahl der Geleebohnen -- Tabelle 2.2: Zusammenfassende Statistik für die Anzahl der Lebenspartner -- Tabelle 4.1: Ergebnisse für Patienten in der Herzschutzstudie -- Tabelle 4.2: Illustration des Simpson-Paradoxons -- Tabelle 5.1: Zusammenfassende Statistik der Körpergröße der Eltern und ihrer Erwachsene Kinder -- Tabelle 5.2: Korrelationen zwischen der Größe von erwachsenen Kindern und den Eltern desselben Geschlechts -- Tabelle 5.3: Ergebnisse der Multiple-Liner-Regression in Bezug auf Größe des erwachsenen Nachwuchses zu Mutter und Vater , Tabelle 6.1: Fehlermatrix des Klassifikationsbaums für Titantic-Trainings- und Testkontingent -- Tabelle 6.2: Fiktive ‹Niederschlagswahrscheinlichkeit›-Prognosen -- Tabelle 6.3: Logistischen Regression für die Titanic-Überlebensdaten -- Tabelle 6.4: Die Leistung verschiedener Algorithmen auf den Titanic-Testdaten -- Tabelle 6.5: Brustkrebs-Überlebensraten mit dem Predict-2.1-Algorithmus -- Tabelle 7.1: Zusammenfassende Statistik für lebenslange Sexpartnerinnen und Sexpartner nach Männern -- Tabelle 7.2: Stichproben der von Männern gemeldeten lebenslangen Sexualpartner -- Tabelle 9.1: Vergleich zwischen exakten und Bootstrap-Vertrauensintervallen -- Tabelle 10.1: Kreuztabellierung von Geschlecht und Armverschränkungsverhalten -- Tabelle 10.2: Zahlen von Armverschränkungen nach Geschlechtszugehörigkeit -- Tabelle 10.3: Beobachtete und erwartete Tage mit der angegebenen Zahl von Mordfällen in England und Wales -- Tabelle 10.4: Ergebnisse der Herzschutzstudie mit Vertrauensintervallen und P-Werten -- Tabelle 10.5: Die Ausgabe in R der multiplen Regression unter Verwendung von Galton's Daten -- Tabelle 10.6: Mögliche Ergebnisse des Hypothesentests -- Tabelle 11.1: Wahrscheinlichkeitsverhältnisse für Indizes bezüglich des Skeletts von Richard III -- Tabelle 11.2: Empfohlene verbale Interpretationen von Wahrscheinlichkeitsverhältnissen -- Tabelle 11.3: Interpretationsskala von Kass und Raftery -- Tabelle 13.1: Vorhersagen zum Ausgang der Wahlen für die drei letzten Parlamentswahlen -- Abbildung 0.1: Alter und Geschlecht der Opfer von Harold Shipman -- Abbildung 0.2: Zeitpunkt des Todes von Harold Shipmans Patienten -- Abbildung 0.3: Der PPDA-Problemlösungszyklus -- Abbildung 1.1: 30-Tage-Überlebensraten nach Herzoperationen -- Abbildung 1.2: Anteil der Kinderherzoperationen pro Krankenhaus -- Abbildung 1.3: Anteil der Kinderherzoperationen pro Krankenhaus , Abbildung 1.4: Risiko des Verzehrs von Specksandwiches -- Abbildung 2.1: Glas mit Jelly Beans -- Abbildung 2.2: Verschiedene Arten der Darstellung der Jelly-Bean-Schätzungen -- Abbildung 2.3: Jelly-Bean-Schätzungen auf logarithmischer Skala -- Abbildung 2.4: Angegebene Zahl von gegengeschlechtlichen Partnern im Leben -- Abbildung 2.5: Überlebensraten im Vergleich zur Zahl der Operationen in der Kinderherz­chirurgie -- Abbildung 2.6: Pearson-Korrelationskoeffizienten von 0 -- Abbildung 2.7a: Weltbevölkerungstrends -- Abbildung 2.7b: Weltbevölkerungstrends -- Abbildung 2.8: Relative Bevölkerungszunahme nach Ländern -- Abbildung 2.9: Die Beliebtheit des Namens ‹David› im Laufe der Zeit -- Abbildung 2.10: Infografik zu sexuellen Einstellungen und Lebensstilen -- Abbildung 3.1: Diagramm der induktiven Inferenz -- Abbildung 3.2: Verteilung der Geburtsgewichte -- Abbildung 5.1: Streuung der Körpergrößen von Vätern und Söhnen -- Abbildung 5.2: Logistisches Regressionsmodell für Daten zu Kinderherzoperationen -- Abbildung 6.1: Gedenkstein für Francis William Somerton auf dem Friedhof von Ilfracombe -- Abbildung 6.2: Zusammenfassende Überlebensstatistik für die Titanic-Passagiere -- Abbildung 6.2b: Zusammenfassende Überlebensstatistik für die Titanic-Passagiere -- Abbildung 6.3: Ein Klassifikationsbaum für die Titanic -Daten -- Abbildung 6.4: ROC- Kurven für Algorithmen für Training- und Test-Sets -- Abbildung 6.5: Wahrscheinlichkeiten für das Überleben des Titanic-Unglücks -- Abbildung 6.6: Überangepasster Klassifikationsbaum für die Titanic-Daten -- Abbildung 6.7: Überlebensraten von Frauen nach Brustkrebsoperation -- Abbildung 7.1: Empirische Verteilung der Anzahl der sexuellen Partner -- Abbildung 7.2: Bootstrap-Resamples von der ursprünglichen Stichprobe aus 50 ­Beobachtungen , Abbildung 7.3: Verteilung von Stichprobenmitteln von 1000 Bootstrag-Verteilungen -- Abbildung 7.4: Bootstrap-Regressionen zu den Mutter-Tochter-Daten von Galton -- Abbildung 8.1: Eine Simulation der Spiele des Chevlier de Méré -- Abbildung 8.2: Baum der erwarteten Häufigkeiten von zwei Münzwürfen -- Abbildung 8.3: Wahrscheinlichkeitsbaum für das Werfen zweier Münzen -- Abbildung 8.4: Baum der erwarteten Häufigkeit für die Brust-Krebsvorsorge -- Abbildung 8.5: Beobachtete und erwartete Anzahl von von Mordfällen -- Abbildung 9.1Wahrscheinlichkeitsverteilung von Linkshändern -- Abbildung 9.2: Trichterdiagramm der Darmkrebs-Todesraten -- Abbildung 9.3: Umfragedaten der BBC vor den britischen Parlamentswahlen -- Abbildung 9.4: Mordraten England und in Wales -- Abbildung 10.1: Geschlechterverhältnis bei den Londoner Taufen, 1629-1710 -- Abbildung 10.2: Empirische Verteilung der beobachteten Differenz in Proportionen der ­linken/rechten Armverschränker -- Abbildung 10.3: Sterbeurkunden, die Shipman für Patienten unterschrieb -- Abbildung 10.4: Sequentieller Wahrscheinlichkeitsverhältnis-Test zur Erkennung der ­Verdoppelung des Sterblichkeitsrisikos -- Abbildung 10.5: Erwartete Häufigkeit der Ergebnisse von 1000 Hypothesentests -- Abbildung 11.1: Baum der erwarteten Häufigkeiten für das Drei-Münzen-Problem -- Abbildung 11.2: Baum der erwarteten Häufigkeiten für Doping im Sport -- Abbildung 11.3: »Umgekehrter« Baum der erwarteten Häufigkeiten für Doping im Sport -- Abbildung 11.4: Bayes' »Billard-Tisch« -- Abbildung 12.1: Traditionelle Informationsflüsse für statistische Evidenz
    Additional Edition: Erscheint auch als Druck-Ausgabe Spiegelhalter, David Die Kunst der Statistik München : Redline Verlag,c2020 ISBN 978-3-86881-775-1
    Language: German
    Subjects: Computer Science , Economics , Mathematics , Sociology
    RVK:
    RVK:
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Statistik ; Datenverarbeitung ; Datenanalyse ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    UID:
    almahu_9949301336302882
    Format: 1 online resource (515 pages)
    ISBN: 9783319160061
    Series Statement: Regional Climate Studies
    Note: Intro -- Preface -- Acknowledgments -- Contents -- The BACC II Author Team -- Abbreviations and Acronyms -- 1 Introduction and Summary -- Abstract -- 1.1 Overview -- 1.1.1 Background -- 1.1.2 Overall Summary -- 1.1.3 The BACC Process -- 1.1.4 Important Terminology -- 1.1.5 Annexes -- 1.2 Executive Summary -- 1.2.1 Long-term Climate Change: From the Holocene to the Little Ice Age -- 1.2.2 Recent Climate Change: The Past 200 Years -- 1.2.2.1 Recent Changes in the Atmosphere -- 1.2.2.2 Recent Changes in Hydrology and the Terrestrial Cryosphere -- 1.2.2.3 Recent Changes in Baltic Sea Hydrography -- 1.2.3 Future Climate Change -- 1.2.3.1 Models and Methodology -- 1.2.3.2 Projections of Future Climate Change -- 1.2.4 Environmental Impacts of Climate Change -- 1.2.4.1 Atmospheric Chemistry -- 1.2.4.2 Coastal Ecosystems, Birds, and Forests -- 1.2.4.3 Freshwater Biogeochemistry -- 1.2.4.4 Marine Biogeochemistry -- 1.2.4.5 Marine Ecosystems -- 1.2.4.6 Coastal Erosion and Coastline Changes -- 1.2.5 Socio-Economic Impacts of Climate Change -- 1.2.5.1 Forestry and Agriculture -- 1.2.5.2 Urban Complexes -- 1.2.6 Drivers of Regional Climate Change: Detecting Anthropogenic Change and Attributing Plausible Causes -- 1.2.6.1 Regional Evidence of Global Warming -- 1.2.6.2 Aerosols -- 1.2.6.3 Land Cover -- References -- Part ILong-term Climate Change -- 2 Climate Change During the Holocene (Past 12,000 Years) -- Abstract -- 2.1 Introduction -- 2.2 Causes of Climate Variability During the Holocene -- 2.2.1 External Climate Forcing -- 2.2.1.1 Astronomical Conditions -- 2.2.1.2 Solar Activity -- 2.2.1.3 Volcanic Eruptions -- 2.2.1.4 Greenhouse Gases -- 2.2.2 Climate Modelling of the Holocene in the Baltic Sea Basin -- 2.3 Palaeoclimatic Reconstructions Over the Holocene -- 2.3.1 Sources of Palaeoclimatic Data -- 2.3.2 Methodology for Palaeoclimatic Reconstructions. , 2.4 Climate Variability During the Holocene Relevant for the Baltic Sea Basin -- 2.4.1 Climate at the Boundary of the Younger Dryas/Holocene -- 2.4.2 Early Holocene Oscillations -- 2.4.3 The `8.2 ka Cold Event' -- 2.4.4 The Holocene Thermal Maximum -- 2.4.5 Late Holocene Cooling -- 2.5 Conclusion -- References -- 3 The Historical Time Frame (Past 1000 Years) -- Abstract -- 3.1 Introduction -- 3.2 Data Sources and Methodology -- 3.3 General Features of the Millennial Climate -- 3.4 The Medieval Warm Period (MWP 900--1350) -- 3.5 The Transitional Period (TP 1350--1550) -- 3.6 The Little Ice Age (LIA 1550--1850) -- 3.7 Conclusion -- References -- Part IIRecent Climate Change (Past 200 Years) -- 4 Recent Change---Atmosphere -- Abstract -- 4.1 Introduction -- 4.2 Large-Scale Circulation Patterns -- 4.2.1 Circulation Changes in Recent Decades -- 4.2.2 Long-Term Circulation Changes -- 4.2.3 NAO and Blocking -- 4.2.4 Distant Controls of Circulation Changes -- 4.2.5 Controls of the NAO -- 4.2.6 Circulation Changes in Contrast to Global Warming -- 4.3 Surface Pressure and Winds -- 4.3.1 Wind Climate in Recent Decades -- 4.3.2 Long-Term Wind Climate -- 4.3.3 Long-Term Trends Versus Decadal Variability -- 4.3.4 Potential Inconsistencies in Long-Term Trends -- 4.4 Surface Air Temperature -- 4.4.1 Long-term Temperature Climate -- 4.4.2 Temperature Trends in Recent Decades -- 4.4.3 Daily Cycle and Seasonality -- 4.4.4 Temperature Extremes -- 4.5 Precipitation -- 4.5.1 Long-Term Precipitation Climate -- 4.5.2 Precipitation Climate in Recent Decades -- 4.5.3 Precipitation Extremes -- 4.6 Cloudiness and Solar Radiation -- 4.6.1 Cloudiness -- 4.6.2 Sunshine Duration and Solar Radiation -- 4.7 Conclusion -- References -- 5 Recent Change---River Run-off and Ice Cover -- Abstract -- 5.1 Introduction -- 5.1.1 General Drainage Characteristics of the Baltic Sea Basin. , 5.2 Basin-scale Change in Run-off Patterns -- 5.3 Regional and Seasonal Variations -- 5.3.1 Sub-basin-scale Changes -- 5.3.2 Regional Discharge Patterns by Country -- 5.3.2.1 Estonia -- 5.3.2.2 Finland -- 5.3.2.3 Latvia -- 5.3.2.4 Lithuania -- 5.3.2.5 Poland -- 5.3.2.6 Russia -- 5.3.2.7 Sweden -- 5.4 River Ice Regime -- 5.5 Conclusion -- References -- 6 Recent Change---Terrestrial Cryosphere -- Abstract -- 6.1 Introduction -- 6.2 Recent and Present Change in Seasonal Snow Cover -- 6.2.1 Snow Cover Formation, Duration and Melt -- 6.2.2 Snow Depth and Snow Water Equivalent -- 6.2.3 Snow Cover Extent -- 6.2.4 Snow Structure and Properties -- 6.2.5 Extreme Events -- 6.3 Recent and Present Change in Glacier Extent and Mass Balance -- 6.4 Recent and Present Change in Frozen Ground -- 6.4.1 Seasonally Frozen Ground -- 6.4.2 Permafrost -- 6.5 Conclusion -- References -- 7 Recent Change---Marine Circulation and Stratification -- Abstract -- 7.1 Introduction -- 7.2 Trends and Variations in Water Temperature -- 7.3 Changes in Salinity, Stratification and Water Exchange -- 7.4 Circulation and Transport Patterns and Processes -- 7.4.1 Surface Circulation and Related Processes---Recent Findings -- 7.4.2 Dynamics in the Bottom Layer -- 7.4.3 Mixing -- 7.5 Sensitivity to Changes in Forcing -- 7.6 Conclusion -- References -- 8 Recent Change---Sea Ice -- Abstract -- 8.1 Introduction -- 8.2 Ice Extent -- 8.3 Ice Duration -- 8.4 Ice Thickness -- 8.5 Conclusion -- References -- 9 Recent Change---Sea Level and Wind Waves -- Abstract -- 9.1 Introduction -- 9.2 Sea Level Observations -- 9.2.1 Tide Gauges -- 9.2.2 Satellite Altimetry and GPS Measurements -- 9.3 Change in Mean Sea Level -- 9.3.1 Main Factors Driving Sea Level Change -- 9.3.1.1 Large-Scale Factors -- 9.3.1.2 Regional and Local Factors -- Land Movement -- Meteorological Influence. , 9.3.2 Variations Within the Observational Period (Past 200 Years) -- 9.3.2.1 Long-Term Trends and Decadal Variations -- Absolute Sea Level -- Relative Sea Level -- 9.3.2.2 Changes in Seasonal Variability -- 9.3.2.3 Is Sea Level Rise Within the Baltic Sea Accelerating? -- 9.4 Extreme Sea Levels -- 9.4.1 Main Factors Affecting Extreme Sea Levels in the Baltic Sea -- 9.4.2 Statistics and Long-Term Trends in Extreme Sea Levels -- 9.5 Wind Waves -- 9.5.1 Instrumental Measurements -- 9.5.2 Visual Observations -- 9.5.3 Hindcast Simulations -- 9.5.3.1 Long-Term and Extreme Wave Properties -- 9.5.3.2 Spatio-Temporal Variations -- 9.6 Conclusion -- References -- Part IIIFuture Climate Change -- 10 Projected Change---Models and Methodology -- Abstract -- 10.1 Introduction -- 10.2 Dynamical Downscaling -- 10.2.1 Methodology for Dynamical Downscaling -- 10.2.2 Performance of RCMs in Reproducing Recent Climate -- 10.2.3 Developing and Extending RCMs -- 10.3 Statistical Downscaling -- 10.3.1 Model Output Statistics -- 10.3.1.1 Bias Correction Method -- 10.3.1.2 Perturbation of Observed Data -- 10.3.2 The`Perfect Prognosis' Approach -- 10.3.2.1 A Brand of Calibration Strategies -- 10.3.2.2 Regression Methods -- 10.3.2.3 Weather Classification Methods -- 10.3.2.4 Weather Generators -- 10.3.2.5 Randomisation -- 10.4 Ensembles, How to Use Them and How to Assess an Error of Projection -- 10.4.1 Different Types of Ensembles -- 10.4.2 Are Ensemble Projections Better Than Those Based on Single Climate Projections? -- 10.4.3 Performance-Based Weighting of Ensembles -- 10.4.4 Design and Use of GCM-RCM Ensemble Regional Climate Projections -- 10.5 Validation Techniques -- 10.5.1 Validation Data -- 10.5.2 Validation Indices -- 10.5.3 Validation Measures -- 10.5.4 Measures for Distribution-Wise Validation -- 10.5.5 Measures for Eventwise Validation. , 10.5.6 Validation in a Climate Change Context -- 10.6 Skill of Downscaling Methods -- 10.7 Added Value of Dynamical Downscaling -- 10.8 Downscaling in the Context of Climate Change Impact Studies -- 10.9 Conclusion -- References -- 11 Projected Change---Atmosphere -- Abstract -- 11.1 Introduction -- 11.2 Emission Scenarios -- 11.3 Global Climate Models -- 11.4 Regional Climate Models -- 11.5 Temperature -- 11.6 Precipitation -- 11.7 Wind -- 11.8 Snow -- 11.9 Statistical Downscaling -- 11.10 Conclusion -- References -- 12 Projected Change---Hydrology -- Abstract -- 12.1 Introduction -- 12.2 Country-Specific Projections -- 12.2.1 Belarus -- 12.2.2 Denmark -- 12.2.3 Estonia -- 12.2.4 Finland -- 12.2.5 Germany -- 12.2.6 Latvia -- 12.2.7 Lithuania -- 12.2.8 Norway -- 12.2.9 Poland -- 12.2.10 Russia -- 12.2.11 Sweden -- 12.3 Conclusion -- References -- 13 Projected Change---Marine Physics -- Abstract -- 13.1 Introduction -- 13.2 Water Temperature -- 13.3 Salinity -- 13.4 Sea Ice -- 13.5 Storm Surges -- 13.6 Wind Waves -- 13.7 Conclusion -- References -- 14 Projected Change---Sea Level -- Abstract -- 14.1 Introduction -- 14.2 Sea-level Budget -- 14.3 Steric Expansion -- 14.4 Geoid Changes -- 14.5 Mountain Glaciers and Ice Caps -- 14.6 Greenland Ice Sheet -- 14.7 Antarctic Ice Sheet -- 14.8 Glacial Isostatic Adjustment -- 14.9 The Compiled Budget -- 14.10 Conclusion -- References -- Part IVEnvironmental Impacts of Climate Change -- 15 Environmental Impacts---Atmospheric Chemistry -- Abstract -- 15.1 Introduction -- 15.2 Emissions -- 15.2.1 Land-Based Sources -- 15.2.2 Shipping -- 15.2.2.1 Historical Perspective -- 15.2.2.2 Recent Developments -- 15.2.2.3 Future Projections -- 15.2.3 Land and Sea Emissions---Impact of Climate Change -- 15.3 Observed Concentrations and Deposition -- 15.3.1 Sulphur and Nitrogen -- 15.3.2 Ozone. , 15.4 Modelled Concentrations and Deposition.
    Additional Edition: Print version: The BACC II Author Team, The Bacc Second Assessment of Climate Change for the Baltic Sea Basin Cham : Springer International Publishing AG,c2015 ISBN 9783319160054
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    almahu_9948191798702882
    Format: 492 S. 1825 Abb., 1730 Abb. in Farbe. , online resource.
    Edition: 3rd ed. 1991.
    ISBN: 9783322872098
    Content: Die Auszubildenden werden in diesem Buch anhand von Versuchen an die Lerninhalte herangeführt. Dabei werden Gesetze und Formeln schülergerecht in Merksätzen zusammengefaßt. Neu sind die Abschnitte Digitale Schaltungstechnik, Automatisierungstechnik sowie Antennen- und Blitzschutzanlagen.
    Note: 1 Spule und Kondensator im Gleichstromkreis -- 1.1 Spule -- 1.2 Kondensator -- Übungsaufgaben zu Abschnitt 1 -- 2 Wechselstromschaltungen -- 2.1 Grundlagen -- 2.2 Spule im Wechselstromkreis -- 2.3 Wechselstromleistung -- Übungsaufgaben zu Abschnitt 2.1 bis 2.3 -- 2.4 Zusammengesetzter Wechselstromkreis -- 2.5 Kompensation des induktiven Blindstroms -- 2.6 RC-Glied an Rechteckspannung -- Übungsaufgaben zu Abschnitt 2.4 bis 2.6 -- 3 Drehstrom -- 3.1 Entstehung des Drehstroms -- 3.2 Leistung des Drehstroms -- 3.3 Messen der Drehstromleistung und -arbeit -- Übungsaufgaben zu Abschnitt 3 -- 4 Transformatoren -- 4.1 Einphasentransformator -- 4.2 Kleintransformator -- 4.3 Sonderbauformen -- 4.4 Drehstromtransformator -- 4.5 Parallelschaltung von Transformatoren -- 4.6 Bedeutung der Transformatoren für die Energieversorgung -- Übungsaufgaben zu Abschnitt 4 -- 5 Drehfeldmaschinen -- 5.1 Einphasen- und Drehstromgenerator -- 5.2 Drehfeld -- Übungsaufgaben zu Abschnitt 5.1 und 5.2 -- 5.3 Synchronmotor -- Übungsaufgaben zu Abschnitt 5.3 -- 5.4 Drehstrom-Asynchronmotor -- Übungsaufgaben zu Abschnitt 5.4 -- 5.5 Einphasen-Asynchronmotor -- 5.6 Blindstromkompensation bei Drehstrommotoren -- 5.7 Bremsen von Drehstrommotoren -- Übungsaufgaben zu Abschnitt 5.5 bis 5.7 -- 6 Gleichstrommaschinen -- 6.1 Gleichstromgenerator -- Übungsaufgaben zu Abschnitt 6.1 -- 6.2 Gleichstrommotor -- Übungsaufgaben zu Abschnitt 6.2 -- 7 Sondermaschinen -- 7.1 Servomotor -- 7.2 Schrittmotor -- Übungsaufgaben zu Abschnitt 7.1 und 7.2 -- 7.3 Stromwendermotoren für Wechselstrom und Drehstrom -- 7.4 Umformer -- Übungsaufgaben zu Abschnitt 7.3 und 7.4 -- 8 Antriebstechnik -- 8.1 Mechanische Übertragung der Motorleistung -- 8.2 Motorauswahl -- 8.3 Schalt- und Schutzgeräte für Motoren -- Übungsaufgaben zu Abschnitt 8 -- 9 Leistungselektronik -- 9.1 Gleichrichterschaltungen für Wechsel- und Drehstrom -- Übungsaufgaben zu Abschnitt 9.1 -- 9.2 Bipolare Transistoren -- Übungsaufgaben zu Abschnitt 9.2 -- 9.3 Feldeffekttransistoren -- Übungsaufgaben zu Abschnitt 9.3 -- 9.4 Differenz- und Operationsverstärker -- Übungsaufgaben zu Abschnitt 9.4 -- 9.5 Thyristoren und Triggerschaltelemente -- Übungsaufgaben zu Abschnitt 9.5 -- 9.6 Stromrichterschaltungen -- Übungsaufgaben zu Abschnitt 9.6 -- 10 Digitale Schaltungstechnik -- 10.1 Logische Verknüpfungsglieder -- 10.2 Schaltkreisfamilien -- Übungsaufgaben zu Abschnitt 10.1 und 10.2 -- 10.3 Begriffe der digitalen Informationsverarbeitung -- 10.4 Zahlensystem und ihre Strukturen -- 10.5 Codes -- Übungsaufgaben zu Abschnitt 10.3 bis 10.5 -- 10.6 Schaltalgebra -- Übungsaufgaben zu Abschnitt 10.6 -- 10.7 Kippglieder -- Übungsaufgaben zu Abschnitt 10.7 -- 10.8 Zähler -- 10.9 Schieberegister -- 10.10 Rechenschaltungen, Code-Umsetzer, Multiplexer -- 10.11 Signalumwandlung -- Übungsaufgaben zu Abschnitt 10.9 bis 10.12 -- 11 Automatisierungstechnik -- 11.1 Steuerungstechnik -- Übungsaufgaben zu Abschnitt 11.1 -- 11.2 Regelungstechnik -- Übungsaufgaben zu Abschnitt 11.2 -- 12 Licht- und Beleuchtungstechnik, Elektrowärmegeräte -- 12.1 Grundlagen -- 12.2 Glühlampen -- Übungsaufgaben zu Abschnitt 12.1 und 12.2 -- 12.3 Gasentladungslampen -- 12.4 Bemessung von Beleuchtungsanlagen -- Übungsaufgaben zu Abschnitt 12.3 und 12.4 -- 12.5 Elektrowärmegeräte -- Übungsaufgaben zu Abschnitt 12.5 -- 13 Elektrische Anlagen -- 13.1 Bestimmungen für das Errichten von Starkstromanlagen bis 1000 V -- Übungsaufgaben zu Abschnitt 13.1 -- 13.2 Schutzmaßnahmen in elektrischen Anlagen -- Übungsaufgaben zu Abschnitt 13.2 und 13.2.2 -- Übungsaufgaben zu Abschnitt 13.2.3 -- Übungsaufgaben zu Abschnitt 13.2.4 -- Übungsaufgaben zu Abschnitt 13.2.5 und 13.2.6 -- 14 Antennen- und Blitzschutzanlagen -- 14.1 Ausbreitung modulierter Trägerwellen -- 14.2 Errichten von Antennenanlagen -- Übungsaufgaben zu Abschnitt 14.1 und 14.2 -- 14.3 Blitzschutzanlagen -- Übungsaufgaben zu Abschnitt 14.3 -- Anhang Formelzeichen, Größen und Einheiten -- Bildquellenverzeichnis -- Sachwortverzeichnis.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9783519268062
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Stuttgart :utb GmbH,
    UID:
    almafu_9961266963702883
    Format: 1 Online-Ressource (277 Seiten).
    Edition: 1. Auflage
    ISBN: 9783838561257
    Content: Das Buch zeichnet die Wandlungen des Zusammenspiels zwischen Strafrecht und Gesellschaft vom Frühmittelalter bis 1990 nach. Akzentuiert wird das 20. Jahrhundert, namentlich das dem Terror unterstellte NS-Strafrecht, das sozialistische Umerziehungsstrafrecht der DDR und die bundesdeutsche NS-Aufarbeitung. Zielgruppe sind Jurastudierende sowie jeder interessierte Leser. utb+: Begleitend zum Buch erhalten Leser:innen Gesetzestexte als digitales Bonusmaterial.
    Note: Das Buch zeichnet die Geschichte des Strafrechts in den wechselnden gesellschaftlichen Kontexten seit dem frühen Mittelalter nach. Der Schwerpunkt liegt im 20. Jahrhundert: auf dem terrorstützenden NS-Strafrecht, dem Umerziehungsstrafrecht der DDR sowie dem Strafrecht der frühen Bundesrepublik mit seinen freiheitsorientierten Reformbestrebungen. Zielgruppe sind Jurastudierende sowie jeder/jede interessierte Leser/Leserin. , Hinweis zum Buch 5 Abkürzungsverzeichnis 11 Vorbemerkung: Zugänge zur Strafrechtsgeschichte 13 1. Das Frühmittelalter (500-1000) 15 1.1 Vorgeschichte bis 500 n. Chr.: "Germanisches Strafrecht 15 1.2 Das Frankenreich 17 1.2.1 Geschichtliche Eckdaten: Kaiser, Könige, Grundherren, Bauern 17 1.2.2 Konfliktbewältigung nach den leges barbarorum 18 1.2.2.1 Rechtsbrüche und Bußen 19 1.2.2.2 Verfahren vor den Volksgerichten 21 1.2.3 Fehdewesen, Königsgerichte, staatliches Strafen 22 1.2.4 Kirchliche Bußpraxis 24 2. Das Hoch-und Spätmittelalter (1000-1500) 25 2.1 Geschichtliche Eckdaten: Deutsches König- und Kaiserreich, Kirche, Städte 26 2.2 Kirchliches Strafrecht 27 2.3 Weltliches Strafrecht 29 2.3.1 Fehden und Landfrieden 29 2.3.2 Der Sachsenspiegel 30 2.3.3 Strafpraxis im Spätmittelalter 32 2.3.4 Die Rezeption des italienischen gelehrten Strafrechts im Reich 34 3. Das Reformationszeitalter (1500-1650) 37 3.1 Geschichtliche Eckdaten: Reichsreformen, Reformation, Dreißigjähriger Krieg 37 3.2 Ewiger Landfrieden und Reichskammergericht 38 3.3 Die Constitutio Criminalis Carolina von 1532 und das Gemeine deutsche Strafrecht 39 3.3.1 Entstehung und Wirkung der Carolina 39 3.3.2 Das Erkenntnisverfahren 40 3.3.3 Der "endliche Rechtstag" und die Strafen 42 3.3.4 Delikte und Kriminalität 44 3.3.5 Insbesondere: Die strafrechtliche Verfolgung angeblicher Hexerei 46 3.3.6 Allgemeine Lehren und Strafzweckkonzepte 47 4. Absolutismus und Aufklärung (1650-1800 49 4.1 Geschichtliche Eckdaten: Der Aufstieg Österreichs und Preußens 49 4.2 Strafrecht im frühneuzeitlichen Naturrechtsdenken 50 4.3 Universitäre Lehre und Strafrechtswissenschaft 52 4.4 Der aufklärerische Kampf gegen Hexenverfolgung, Todesstrafe und Folter 53 4.5 Naturrechtlich-aufgeklärte Strafgesetzgebung 55 4.5.1 Kodifikationsgedanke und richterliche Gesetzesbindung 55 4.5.2 Strafgesetzgebung in Österreich 56 4.5.3 Strafgesetzgebung in Preußen 57 4.5.3.1 Die Strafrechtspolitik Friedrichs II 57 4.5.3.2 Das Allgemeine Landrecht für die Preußischen Staaten 58 5. Die deutschen Partikularstaaten (1800-1871) 61 5.1 Geschichtliche Eckdaten: Rheinbund, Deutscher Bund, Norddeutscher Bund 61 5.2 Strafrechtsphilosophie: Kant und Hegel 63 5.3 Materielles Strafrecht und Bestrafungspraxis 64 5.3.1 Der Code pénal in deutschen Territorien 64 5.3.2 Feuerbach und das Strafgesetzbuch für das Königreich Bayern von 1813 65 5.3.3 Partikulare Strafgesetzgebung der 1830er bis 1860er Jahre 68 5.3.4 Die Strafsanktionen 69 5.4 Die Einführung des Reformierten Strafprozesses 71 5.5 Strafrechtswissenschaft und -lehre 73 6. Das zweite Deutsche Kaiserreich (1871-1918) 75 6.1 Geschichtliche Eckdaten: Industrialisierung, Imperialismus, Erster Weltkrieg 75 6.2 Strafverfahren, Justiz, Anwaltschaft 77 6.3 Das Reichsstrafgesetzbuch von 1871 79 6.3.1 Der Allgemeine Teil und die neue Verbrechenslehre 79 6.3.2 Der Besondere Teil 81 6.3.3 Die Sanktionen 82 6.4 Aufbruch in die strafrechtswissenschaftliche Moderne: "Schulenstreit" und Folgen 83 6.5 Kolonialstrafrecht, Nebenstrafrecht, Kriegsstrafrecht 85 7. Die Weimarer Republik (1918-1933) 87 7.1 Geschichtliche Eckdaten: Politische Unruhen und wirtschaftliche Krisen 87 7.2 Politische Kriminalität und politisches Strafrecht 88 7.3 Strafprozessrecht 91 7.4 Sanktionen, Jugendstrafrecht, Strafvollzug 93 8. Der nationalsozialistische Staat (1933-1945) 95 8.1 Geschichtliche Eckdaten: "Gleichschaltung", Terror, Massenmorde, Zweiter Weltkrieg 96 8.2 Strafgesetzgebung und Strafpraxis in der Vorkriegszeit 97 8.2.1 "Rassenschande" als Straftat im "völkischen" Staat 97 8.2.2 Unterdrückung politischer Opposition, Sondergerichte und Volksgerichtshof 98 8.2.3 Allgemeines Strafrecht in der "Volksgemeinschaft" 99 8.2.3.1 Lückenlose Ahndung von Pflichtverletzungen gegen die "Volksgemeinschaft" 99 8.2.3.2 Der Täter und die Sanktionen 101 8.3 Anwaltschaft, Strafjustiz, Juristenausbildung 104 8.4 Strafgesetzgebung und Strafpraxis im Zweiten Weltkrieg 105 8.4.1 Die Straftatbestände des Kriegsstrafrechts 105 8.4.2 Wehrmachts-und SS-Justiz, Sondergerichte, Volksgerichtshof und Widerstand 106 8.4.3 Die Massen-und Völkermorde und die Auflösung des Strafprozessrechts107 8.5 Reflexion: Zivilisationsbruch und Kontinuitäten 109 9. Die Deutsche Demokratische Republik (1949-1990) 111 9.1 Geschichtliche Eckdaten: Aufbau und Scheitern des real existierenden Sozialismus 112 9.2 "Stalinisierung" und "differenzierende Kriminalpolitik" im Strafrecht bis 1968 113 9.3 Sozialistisches Strafrecht nach dem StGB von 1968 115 9.3.1 Kriminologie und Prävention 115 9.3.2 "Maßnahmen der strafrechtlichen Verantwortlichkeit" 116 9.3.3 Delikte, insbesondere: Politisches Strafrecht 119 9.4 Strafjustiz, Anwaltschaft und Strafprozess 121 9.5 Strafrechtswissenschaft und -ausbildung 123 9.6 Die Zeit des Umbruchs 1989-1990 125 9.7 Reflexion: Geschlossenheit von Straftheorie und -praxis 125 10. Die frühe Bundesrepublik Deutschland (1949-1990) 127 10.1 Geschichtliche Eckdaten: Westintegration, Wirtschaftsaufschwung, Liberalisierung 128 10.2 Die Nürnberger Prozesse und die Entwicklung des Völkerstrafrechts 129 10.3 Die bundesdeutsche Strafjustiz und ihre NS-Vergangenheit 130 10.4 Die Verfolgung nationalsozialistischer Gewaltverbrechen durch deutsche Gerichte 132 10.4.1 Die Prozesse gegen NS-Verbrecher und die bundesdeutsche Öffentlichkeit 132 10.4.2 Täterfreundliche Strafnormanwendung 133 10.5 Materielles Strafrecht und Rechtsfolgen 136 10.5.1 Kontinuitäten, "Naturrechtsrenaissance" und Reformen 136 10.5.2 Der Allgemeine Teil 137 10.5.3 Der Besondere Teil 138 10.5.4 Sanktionen, Strafvollzug, Jugendstrafrecht 139 10.6 Strafprozessrecht 141 10.7 Strafrechtswissenschaft und -ausbildung 144 10.8 Die Ahndung der von DDR-Funktionären begangenen Straftaten 145 Anmerkungen 149 Literaturhinweise zur Einführung 271 Personenverzeichnis 275
    Additional Edition: Erscheint auch als Printausgabe ISBN 9783825261252
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edoccha_9960161409102883
    Format: 1 online resource (xix, 423 pages). : , illustrations.
    Series Statement: Woodhead publishing series in energy
    Note: Front Cover -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles -- Woodhead Titles -- Other Related Elsevier Titles -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power CyclesWoodhead Publishing Series in Energy ... -- Copyright -- Contents -- List of contributors -- The Editors -- Acknowledgments -- Foreword -- Overview -- Overview -- Key Terms -- 1. Introduction -- 2. Brayton cycles based on CO2 as the working fluid -- 3. Recompression indirect-fired Brayton cycle -- 4. Recompression supercritical CO2 Brayton cycle versus Rankine cycle -- 5. Semiclosed direct-fired oxyfuel Brayton cycle -- 6. Brayton cycles based on other supercritical fluids -- References -- 1 - Introduction and background -- Overview -- Key Terms -- 1.1 Introduction -- 1.2 Overview of supercritical CO2 power cycle fundamentals -- 1.2.1 Cycle machinery and balance of plant -- 1.2.1.1 Turbomachinery -- 1.2.1.2 Heat exchangers -- 1.2.1.3 Bearings and seals -- 1.2.1.4 Balance of plant -- Generators, motors, and gear systems -- Generators -- Gearbox systems -- Piping and skids -- System layout and control issues -- 1.3 Applications for sCO2 power cycles -- 1.3.1 Waste heat recovery -- 1.3.2 Concentrated solar power -- 1.3.3 Fossil fuel power plants -- 1.3.4 Nuclear plants -- 1.3.5 Bulk energy storage, geothermal sCO2 power plants, and biofuel plants -- 1.4 Summary and conclusions -- References -- 2 - Physical properties -- Overview -- Key Terms -- 2.1 Introduction -- 2.2 Qualities of supercritical CO2 -- 2.3 Equations of state for calculating supercritical CO2 properties -- 2.3.1 Categories of equations of state -- 2.3.2 Available software -- 2.3.3 Common equations of state used in software -- 2.3.4 Issues with using equations of state for supercritical CO2. , 2.3.5 Experimental data for supercritical CO2 properties -- 2.4 Overview of thermodynamic property trends -- 2.5 Impurities of CO2 mixtures -- 2.6 Summary -- References -- 3 - Thermodynamics -- Overview -- Key Terms -- 3.1 Introduction -- 3.2 Governing relationships -- 3.2.1 Conservation of mass and energy -- 3.2.2 Entropy and the second law of thermodynamics -- 3.2.3 Exergy and irreversibility -- 3.3 Analysis -- 3.3.1 Turbomachinery -- 3.3.2 Ducts and piping -- 3.3.3 Heat exchangers -- 3.4 Example applications -- 3.4.1 Simple recuperated cycle -- 3.4.2 Recompression cycle -- 3.5 Conclusions -- References -- 4 - High-temperature materials -- Overview -- Key Terms -- 4.1 Introduction -- 4.1.1 Alloy creep limitations -- 4.1.2 Creep of thin-walled components -- 4.1.3 High-temperature oxidation -- 4.2 Thermodynamics of oxidation -- 4.3 Investigations of high-temperature corrosion in ambient and subcritical CO2 -- 4.4 Laboratory investigations of supercritical CO2 corrosion rates and reaction products -- 4.4.1 Idaho National Laboratory -- 4.4.2 Japan Atomic Energy Agency -- 4.4.3 Centre dEtudes Atomiques -- 4.4.4 Massachusetts Institute of Technology -- 4.4.5 University of Wisconsin -- 4.4.6 Carleton University/Natural Resources Canada -- 4.4.7 Sandia National Laboratory -- 4.4.8 Korea Advanced Institute for Science and Technology -- 4.4.9 Oak Ridge National Laboratory -- 4.4.10 Commonwealth Scientific and Industrial Research Organisation -- 4.4.11 Effect of impurities on corrosion rates in supercritical CO2 -- 4.5 Effect of CO2 on mechanical properties -- 4.6 Current status and ongoing supercritical CO2 work -- 4.7 Future directions -- 1. Define materials limits, including mechanical effects -- 2. Testing in flowing sCO2 -- 3. Effect of impurities on corrosion at high temperature -- 4. Materials for advanced heat exchangers. , 5. Alloy/coating development for sCO2 -- 6. Formation of an sCO2 consortium -- 4.8 Conclusions -- Acknowledgments -- References -- 5 - Modeling and cycle optimization -- Overview -- Key Terms -- 5.1 Introduction to cycle modeling -- 5.2 Basics of cycle modeling -- 5.2.1 Fluid properties -- 5.2.2 Coolers and heaters -- 5.2.3 Recuperators -- 5.2.4 Turbomachinery -- 5.2.5 Piping and valves -- 5.3 Design point analysis -- 5.3.1 Cycle comparison -- 5.3.2 Impact of cycle temperatures -- 5.4 Considerations for off-design modeling -- 5.4.1 Turbomachinery -- 5.4.2 Recuperators -- 5.4.3 Valves -- 5.5 Advanced considerations for steady-state modeling -- 5.6 Cycle optimization -- 5.7 Transient code requirements -- 5.7.1 Effects of system scale -- 5.7.2 Example of a transient analysis code -- 5.8 Conclusion -- References -- 6 - Economics -- Overview -- Key Terms -- 6.1 Introduction (advantages and disadvantages in potential markets) -- 6.2 Potential markets -- 6.2.1 Industrial waste heat recovery -- 6.2.2 Concentrated solar power -- 6.2.3 Fossil fuel power plants -- 6.2.4 Nuclear plants -- 6.2.5 Bulk energy storage and geothermal supercritical CO2 power plants -- 6.3 Introduction to the economics of supercritical CO2 power plants -- 6.3.1 Levelized cost of electricity -- 6.3.2 Internal rate of return -- 6.3.3 Net present value -- 6.4 Project cost basis -- 6.4.1 Recuperator -- 6.4.2 Supercritical CO2 gas chiller -- 6.4.3 Waste heat recovery unit -- 6.4.4 Turbomachinery plus other component BOP costs -- 6.4.5 Gas turbine cost -- 6.4.6 Supercritical CO2 bottoming cycle cost estimate -- 6.5 Summary and conclusions of supercritical CO2 power system economics -- References -- 7 - Turbomachinery -- Overview -- Key Terms -- 7.1 Introduction -- 7.2 Machinery configurations -- 7.2.1 Radial/axial -- 7.2.2 Generator connection and gearing configurations. , 7.2.3 Dual or single shaft -- 7.3 Existing supercritical CO2 turbomachinery designs -- 7.3.1 Existing prototypes -- 7.3.1.1 The 100-kWe-scale demonstration prototypes -- 7.3.1.2 The 250-kWe to 8-MWe-Scale commercial prototypes (Echogen) -- 7.3.1.3 General Electric/Southwest Research Institute 10-MWe-scale prototype -- 7.3.2 Turbomachinery in literature -- 7.3.2.1 Angelino (1968) 1000-MWe turbine -- 7.3.2.2 Dostal et al. (2004) 246-MWe turbomachinery -- 7.3.2.3 Gas Technology Institute 10/550/645/1000-MWe turbomachinery -- 7.3.2.4 Toshiba 25-MW direct-fired turbine -- 7.3.2.5 GE/SwRI 50 and 450-MWe trains -- 7.3.2.6 Hanwha Techwin/SwRI integrally geared compander -- Case study: 20-MWe recompression cycle -- 7.4 Common design attributes and components -- 7.4.1 Bearings -- 7.4.1.1 High surface speeds -- 7.4.1.2 High unit loading -- 7.4.2 Rotordynamics -- 7.4.2.1 Introduction to rotordynamic instability -- 7.4.2.2 Cross-coupling in annular seals and secondary flow passages -- 7.4.2.3 Shaft axial length -- 7.4.2.4 Rotordynamics case study: 20-MWe supercritical CO2 expander -- 7.4.3 Shaft end seals -- 7.4.3.1 Dry gas seals -- 7.4.3.2 Floating ring oil seals -- 7.4.4 Pressure containment -- 7.4.4.1 Static seals -- 7.4.5 Starting -- 7.4.6 Integration with load control -- 7.5 Compressor and pump design considerations for supercritical CO2 -- 7.5.1 Impeller mechanical design -- 7.5.2 Aerodynamic performance -- 7.5.2.1 Aerodynamic design: 20-MWe case study -- 7.5.3 Surge control -- 7.6 Turbine design considerations for supercritical CO2 -- 7.6.1 Overspeed risk -- 7.6.2 Thermal management -- 7.6.3 Thermal transient effects on pressure containment (challenges, liner concept, other concepts) -- 7.6.4 Turbine rotor/blade mechanical design -- 7.6.5 Turbine aerodynamic performance -- 7.7 Summary -- References -- 8 - Heat exchangers -- Overview -- Key Terms. , 8.1 Introduction -- 8.2 Applications in supercritical CO2 power cycles -- 8.2.1 Heaters -- 8.2.2 Recuperators -- 8.2.3 Coolers -- 8.3 Candidate architectures -- 8.3.1 Shell and tube -- 8.3.2 Microtube -- 8.3.3 Printed circuit -- 8.3.4 Plate fin -- 8.3.5 Emerging designs -- 8.4 Operating conditions and requirements -- 8.4.1 Operating temperature -- 8.4.2 Operating pressure -- 8.4.3 Transient operation -- 8.4.4 Emergency shutdown operation -- 8.5 Design considerations -- 8.5.1 Life and durability -- 8.5.2 Maintenance -- 8.5.3 Cost -- 8.5.4 Heat exchanger design fundamentals -- 8.5.4.1 Thermal performance and heat transfer -- Correlations and empirical results -- 8.5.4.2 Hydraulic performance -- 8.6 Design validation -- 8.6.1 Thermal-hydraulic performance -- 8.6.2 Strength testing -- 8.6.3 Creep testing -- 8.6.4 Fatigue testing -- 8.7 Conclusion -- References -- 9 - Auxiliary equipment -- Overview -- Key Terms -- 9.1 CO2 supply and inventory control systems -- 9.2 Filtration -- 9.3 Dry gas seal supply and vent system -- 9.4 Instrumentation -- 9.5 Summary -- References -- 10 - Waste heat recovery -- Overview -- Key Terms -- 10.1 Introduction -- 10.2 Waste heat recovery overview -- 10.2.1 Quality of heat and system efficiency -- 10.2.2 Quantity of heat and potential energy -- 10.2.3 Waste heat temperature -- 10.3 Waste heat recovery applications -- 10.3.1 Glass manufacturing -- 10.3.2 Steel manufacturing -- 10.3.3 Cement manufacturing -- 10.3.4 Gas turbine engine -- 10.3.5 Reciprocating engine -- 10.4 Waste heat exchanger design -- 10.5 Economics and competitive assessment -- 10.6 Technology development needs -- References -- 11 - Concentrating solar power -- Overview -- Key Terms -- 11.1 Motivation for integrating supercritical CO2 into CSP systems -- 11.1.1 Concentrating solar power's role in a renewable energy future. , 11.1.2 General concentrating solar power attributes and the benefits of supercritical CO2 to CSP.
    Additional Edition: ISBN 0-08-100804-X
    Additional Edition: ISBN 0-08-100805-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    edocfu_9960161409102883
    Format: 1 online resource (xix, 423 pages). : , illustrations.
    Series Statement: Woodhead publishing series in energy
    Note: Front Cover -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles -- Woodhead Titles -- Other Related Elsevier Titles -- Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power CyclesWoodhead Publishing Series in Energy ... -- Copyright -- Contents -- List of contributors -- The Editors -- Acknowledgments -- Foreword -- Overview -- Overview -- Key Terms -- 1. Introduction -- 2. Brayton cycles based on CO2 as the working fluid -- 3. Recompression indirect-fired Brayton cycle -- 4. Recompression supercritical CO2 Brayton cycle versus Rankine cycle -- 5. Semiclosed direct-fired oxyfuel Brayton cycle -- 6. Brayton cycles based on other supercritical fluids -- References -- 1 - Introduction and background -- Overview -- Key Terms -- 1.1 Introduction -- 1.2 Overview of supercritical CO2 power cycle fundamentals -- 1.2.1 Cycle machinery and balance of plant -- 1.2.1.1 Turbomachinery -- 1.2.1.2 Heat exchangers -- 1.2.1.3 Bearings and seals -- 1.2.1.4 Balance of plant -- Generators, motors, and gear systems -- Generators -- Gearbox systems -- Piping and skids -- System layout and control issues -- 1.3 Applications for sCO2 power cycles -- 1.3.1 Waste heat recovery -- 1.3.2 Concentrated solar power -- 1.3.3 Fossil fuel power plants -- 1.3.4 Nuclear plants -- 1.3.5 Bulk energy storage, geothermal sCO2 power plants, and biofuel plants -- 1.4 Summary and conclusions -- References -- 2 - Physical properties -- Overview -- Key Terms -- 2.1 Introduction -- 2.2 Qualities of supercritical CO2 -- 2.3 Equations of state for calculating supercritical CO2 properties -- 2.3.1 Categories of equations of state -- 2.3.2 Available software -- 2.3.3 Common equations of state used in software -- 2.3.4 Issues with using equations of state for supercritical CO2. , 2.3.5 Experimental data for supercritical CO2 properties -- 2.4 Overview of thermodynamic property trends -- 2.5 Impurities of CO2 mixtures -- 2.6 Summary -- References -- 3 - Thermodynamics -- Overview -- Key Terms -- 3.1 Introduction -- 3.2 Governing relationships -- 3.2.1 Conservation of mass and energy -- 3.2.2 Entropy and the second law of thermodynamics -- 3.2.3 Exergy and irreversibility -- 3.3 Analysis -- 3.3.1 Turbomachinery -- 3.3.2 Ducts and piping -- 3.3.3 Heat exchangers -- 3.4 Example applications -- 3.4.1 Simple recuperated cycle -- 3.4.2 Recompression cycle -- 3.5 Conclusions -- References -- 4 - High-temperature materials -- Overview -- Key Terms -- 4.1 Introduction -- 4.1.1 Alloy creep limitations -- 4.1.2 Creep of thin-walled components -- 4.1.3 High-temperature oxidation -- 4.2 Thermodynamics of oxidation -- 4.3 Investigations of high-temperature corrosion in ambient and subcritical CO2 -- 4.4 Laboratory investigations of supercritical CO2 corrosion rates and reaction products -- 4.4.1 Idaho National Laboratory -- 4.4.2 Japan Atomic Energy Agency -- 4.4.3 Centre dEtudes Atomiques -- 4.4.4 Massachusetts Institute of Technology -- 4.4.5 University of Wisconsin -- 4.4.6 Carleton University/Natural Resources Canada -- 4.4.7 Sandia National Laboratory -- 4.4.8 Korea Advanced Institute for Science and Technology -- 4.4.9 Oak Ridge National Laboratory -- 4.4.10 Commonwealth Scientific and Industrial Research Organisation -- 4.4.11 Effect of impurities on corrosion rates in supercritical CO2 -- 4.5 Effect of CO2 on mechanical properties -- 4.6 Current status and ongoing supercritical CO2 work -- 4.7 Future directions -- 1. Define materials limits, including mechanical effects -- 2. Testing in flowing sCO2 -- 3. Effect of impurities on corrosion at high temperature -- 4. Materials for advanced heat exchangers. , 5. Alloy/coating development for sCO2 -- 6. Formation of an sCO2 consortium -- 4.8 Conclusions -- Acknowledgments -- References -- 5 - Modeling and cycle optimization -- Overview -- Key Terms -- 5.1 Introduction to cycle modeling -- 5.2 Basics of cycle modeling -- 5.2.1 Fluid properties -- 5.2.2 Coolers and heaters -- 5.2.3 Recuperators -- 5.2.4 Turbomachinery -- 5.2.5 Piping and valves -- 5.3 Design point analysis -- 5.3.1 Cycle comparison -- 5.3.2 Impact of cycle temperatures -- 5.4 Considerations for off-design modeling -- 5.4.1 Turbomachinery -- 5.4.2 Recuperators -- 5.4.3 Valves -- 5.5 Advanced considerations for steady-state modeling -- 5.6 Cycle optimization -- 5.7 Transient code requirements -- 5.7.1 Effects of system scale -- 5.7.2 Example of a transient analysis code -- 5.8 Conclusion -- References -- 6 - Economics -- Overview -- Key Terms -- 6.1 Introduction (advantages and disadvantages in potential markets) -- 6.2 Potential markets -- 6.2.1 Industrial waste heat recovery -- 6.2.2 Concentrated solar power -- 6.2.3 Fossil fuel power plants -- 6.2.4 Nuclear plants -- 6.2.5 Bulk energy storage and geothermal supercritical CO2 power plants -- 6.3 Introduction to the economics of supercritical CO2 power plants -- 6.3.1 Levelized cost of electricity -- 6.3.2 Internal rate of return -- 6.3.3 Net present value -- 6.4 Project cost basis -- 6.4.1 Recuperator -- 6.4.2 Supercritical CO2 gas chiller -- 6.4.3 Waste heat recovery unit -- 6.4.4 Turbomachinery plus other component BOP costs -- 6.4.5 Gas turbine cost -- 6.4.6 Supercritical CO2 bottoming cycle cost estimate -- 6.5 Summary and conclusions of supercritical CO2 power system economics -- References -- 7 - Turbomachinery -- Overview -- Key Terms -- 7.1 Introduction -- 7.2 Machinery configurations -- 7.2.1 Radial/axial -- 7.2.2 Generator connection and gearing configurations. , 7.2.3 Dual or single shaft -- 7.3 Existing supercritical CO2 turbomachinery designs -- 7.3.1 Existing prototypes -- 7.3.1.1 The 100-kWe-scale demonstration prototypes -- 7.3.1.2 The 250-kWe to 8-MWe-Scale commercial prototypes (Echogen) -- 7.3.1.3 General Electric/Southwest Research Institute 10-MWe-scale prototype -- 7.3.2 Turbomachinery in literature -- 7.3.2.1 Angelino (1968) 1000-MWe turbine -- 7.3.2.2 Dostal et al. (2004) 246-MWe turbomachinery -- 7.3.2.3 Gas Technology Institute 10/550/645/1000-MWe turbomachinery -- 7.3.2.4 Toshiba 25-MW direct-fired turbine -- 7.3.2.5 GE/SwRI 50 and 450-MWe trains -- 7.3.2.6 Hanwha Techwin/SwRI integrally geared compander -- Case study: 20-MWe recompression cycle -- 7.4 Common design attributes and components -- 7.4.1 Bearings -- 7.4.1.1 High surface speeds -- 7.4.1.2 High unit loading -- 7.4.2 Rotordynamics -- 7.4.2.1 Introduction to rotordynamic instability -- 7.4.2.2 Cross-coupling in annular seals and secondary flow passages -- 7.4.2.3 Shaft axial length -- 7.4.2.4 Rotordynamics case study: 20-MWe supercritical CO2 expander -- 7.4.3 Shaft end seals -- 7.4.3.1 Dry gas seals -- 7.4.3.2 Floating ring oil seals -- 7.4.4 Pressure containment -- 7.4.4.1 Static seals -- 7.4.5 Starting -- 7.4.6 Integration with load control -- 7.5 Compressor and pump design considerations for supercritical CO2 -- 7.5.1 Impeller mechanical design -- 7.5.2 Aerodynamic performance -- 7.5.2.1 Aerodynamic design: 20-MWe case study -- 7.5.3 Surge control -- 7.6 Turbine design considerations for supercritical CO2 -- 7.6.1 Overspeed risk -- 7.6.2 Thermal management -- 7.6.3 Thermal transient effects on pressure containment (challenges, liner concept, other concepts) -- 7.6.4 Turbine rotor/blade mechanical design -- 7.6.5 Turbine aerodynamic performance -- 7.7 Summary -- References -- 8 - Heat exchangers -- Overview -- Key Terms. , 8.1 Introduction -- 8.2 Applications in supercritical CO2 power cycles -- 8.2.1 Heaters -- 8.2.2 Recuperators -- 8.2.3 Coolers -- 8.3 Candidate architectures -- 8.3.1 Shell and tube -- 8.3.2 Microtube -- 8.3.3 Printed circuit -- 8.3.4 Plate fin -- 8.3.5 Emerging designs -- 8.4 Operating conditions and requirements -- 8.4.1 Operating temperature -- 8.4.2 Operating pressure -- 8.4.3 Transient operation -- 8.4.4 Emergency shutdown operation -- 8.5 Design considerations -- 8.5.1 Life and durability -- 8.5.2 Maintenance -- 8.5.3 Cost -- 8.5.4 Heat exchanger design fundamentals -- 8.5.4.1 Thermal performance and heat transfer -- Correlations and empirical results -- 8.5.4.2 Hydraulic performance -- 8.6 Design validation -- 8.6.1 Thermal-hydraulic performance -- 8.6.2 Strength testing -- 8.6.3 Creep testing -- 8.6.4 Fatigue testing -- 8.7 Conclusion -- References -- 9 - Auxiliary equipment -- Overview -- Key Terms -- 9.1 CO2 supply and inventory control systems -- 9.2 Filtration -- 9.3 Dry gas seal supply and vent system -- 9.4 Instrumentation -- 9.5 Summary -- References -- 10 - Waste heat recovery -- Overview -- Key Terms -- 10.1 Introduction -- 10.2 Waste heat recovery overview -- 10.2.1 Quality of heat and system efficiency -- 10.2.2 Quantity of heat and potential energy -- 10.2.3 Waste heat temperature -- 10.3 Waste heat recovery applications -- 10.3.1 Glass manufacturing -- 10.3.2 Steel manufacturing -- 10.3.3 Cement manufacturing -- 10.3.4 Gas turbine engine -- 10.3.5 Reciprocating engine -- 10.4 Waste heat exchanger design -- 10.5 Economics and competitive assessment -- 10.6 Technology development needs -- References -- 11 - Concentrating solar power -- Overview -- Key Terms -- 11.1 Motivation for integrating supercritical CO2 into CSP systems -- 11.1.1 Concentrating solar power's role in a renewable energy future. , 11.1.2 General concentrating solar power attributes and the benefits of supercritical CO2 to CSP.
    Additional Edition: ISBN 0-08-100804-X
    Additional Edition: ISBN 0-08-100805-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages