Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Boca Raton, FL :CRC Press, Taylor & Francis Group,
    UID:
    almahu_9949386568902882
    Umfang: 1 online resource (x, 157 pages)
    Ausgabe: First edition.
    ISBN: 9781003037675 , 1003037674 , 9781000071658 , 1000071650 , 9781000070347 , 1000070344 , 9781000070668 , 1000070662
    Inhalt: 3D rotation analysis is widely encountered in everyday problems thanks to the development of computers. Sensing 3D using cameras and sensors, analyzing and modeling 3D for computer vision and computer graphics, and controlling and simulating robot motion all require 3D rotation computation. This book focuses on the computational analysis of 3D rotation, rather than classical motion analysis. It regards noise as random variables and models their probability distributions. It also pursues statistically optimal computation for maximizing the expected accuracy, as is typical of nonlinear optimization. All concepts are illustrated using computer vision applications as examples. Mathematically, the set of all 3D rotations forms a group denoted by SO(3). Exploiting this group property, we obtain an optimal solution analytical or numerically, depending on the problem. Our numerical scheme, which we call the "Lie algebra method," is based on the Lie group structure of SO(3). This book also proposes computing projects for readers who want to code the theories presented in this book, describing necessary 3D simulation setting as well as providing real GPS 3D measurement data. To help readers not very familiar with abstract mathematics, a brief overview of quaternion algebra, matrix analysis, Lie groups, and Lie algebras is provided as Appendix at the end of the volume.
    Anmerkung: "A Chapman & Hall Book." , Chapter 1. Introduction 1.1 3D ROTATIONS 1.2 ESTIMATION OF ROTATION 1.3 DERIVATIVE-BASED OPTIMIZATION1.4 RELIABILITY EVALUATION OF ROTATION COMPUTATION1.5 COMPUTING PROJECTS 1.6 RELATED TOPICS OF MATHEMATICS Chapter 2. Geometry of Rotation2.1 3D ROTATION 2.2 ORTHOGONAL MATRICES AND ROTATION MATRICES2.3 EULERS THEOREM 2.4 AXIAL ROTATIONS 2.5 SUPPLEMENTAL NOTE 2.6 EXERCISES Chapter 3. Parameters of Rotation3.1 ROLL, PITCH, YAW 3.2 COORDINATE SYSTEM ROTATION 153.3 EULER ANGLES 3.4 RODRIGUES FORMULA 3.5 QUATERNION REPRESENTATION 213.6 SUPPLEMENTAL NOTES 3.7 EXERCISES Chapter 4. Estimation of Rotation I: Isotropic Noise4.1 ESTIMATING ROTATION 4.2 LEAST SQUARES AND MAXIMUM LIKELIHOOD4.3 SOLUTION BY SINGULAR VALUE DECOMPOSITION4.4 SOLUTION BY QUATERNION REPRESENTATION4.5 OPTIMAL CORRECTION OF ROTATION4.6 SUPPLEMENTAL NOTE 4.7 EXERCISES Chapter 5. Estimation of Rotation II: Anisotropic Noise5.1 ANISOTROPIC GAUSSIAN DISTRIBUTIONS5.2 ROTATION ESTIMATION BY MAXIMUM LIKELIHOOD5.3 ROTATION ESTIMATION BY QUATERNION REPRESENTATION5.4 OPTIMIZATION BY FNS 5.5 METHOD OF HOMOGENEOUS CONSTRAINTS5.6 SUPPLEMENTAL NOTE 5.7 EXERCISES Chapter 6. Derivative-based Optimization: Lie Algebra Method6.1 DERIVATIVE-BASED OPTIMIZATION6.2 SMALL ROTATIONS AND ANGULAR VELOCITY6.3 EXPONENTIAL EXPRESSION OF ROTATION6.4 LIE ALGEBRA OF INFINITESIMAL ROTATIONS6.5 OPTIMIZATION OF ROTATION 6.6 ROTATION ESTIMATION BY MAXIMUM LIKELIHOOD6.7 FUNDAMENTAL MATRIX COMPUTATION6.8 BUNDLE ADJUSTMENT 6.9 SUPPLEMENTAL NOTES 6.10 EXERCISES Chapter 7. Reliability of Rotation Computation 7.1 ERROR EVALUATION FOR ROTATION7.2 ACCURACY OF MAXIMUM LIKELIHOOD7.3 THEORETICAL ACCURACY BOUND7.4 KCR LOWER BOUND 7.5 SUPPLEMENTAL NOTES 7.6 EXERCISES Chapter 8. Computing Projects8.1 STEREO VISION EXPERIMENT8.2 OPTIMAL CORRECTION OF STEREO IMAGES8.3 TRIANGULATION OF STEREO IMAGES8.4 COVARIANCE EVALUATION OF STEREO RECONSTRUCTION8.5 LAND MOVEMENT COMPUTATION USING REAL GPS DATA8.6 SUPPLEMENTAL NOTES 8.7 EXERCISES Appendix A Hamiltons Quaternion AlgebraA. 1 QUATERNIONS A.2 QUATERNION ALGEBRA A.3 CONJUGATE, NORM, AND INVERSEA. 4 QUATERNION REPRESENTATION OF ROTATIONSA. 5 COMPOSITION OF ROTATIONSA. 6 TOPOLOGY OF ROTATIONS A.7 INFINITESIMAL ROTATIONS A.8 REPRESENTATION OF GROUP OF ROTATIONSA. 9 STEREOGRAPHIC PROJECTIONAppendix B Topics of Linear Algebra B.1 LINEAR MAPPING AND BASISB. 2 PROJECTION MATRICES B.3 PROJECTION ONTO A LINE AND A PLANEB. 4 EIGENVALUES AND SPECTRAL DECOMPOSITIONB. 5 MATRIX REPRESENTATION OF SPECTRAL DECOMPOSITIONB. 6 SINGULAR VALUES AND SINGULAR DECOMPOSITIONB. 7 COLUMN AND ROW DOMAINSAppendix C Lie Groups and Lie Algebras C.1 GROUPS C.2 MAPPINGS AND GROUPS OF TRANSFORMATIONC. 3 TOPOLOGY C.4 MAPPINGS OF TOPOLOGICAL SPACESC. 5 MANIFOLDS C.6 LIE GROUPS C.7 LIE ALGEBRAS C.8 LIE ALGEBRAS OF LIE GROUPSAnswers Bibliography Index.
    Weitere Ausg.: Print version: Kanatani, Kenʼichi, 1947- 3D rotations. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2020 ISBN 9780367471330
    Weitere Ausg.: ISBN 0367471337
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_1000070344
    ISSN: 2364-5504
    In: Current directions in biomedical engineering, Berlin : De Gruyter, 2015, 3(2017), 2, Seite 309-312, 2364-5504
    In: volume:3
    In: year:2017
    In: number:2
    In: pages:309-312
    Sprache: Englisch
    Mehr zum Autor: Janiga, Gábor 1975-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 1000000346?
Meinten Sie 1000003344?
Meinten Sie 1000007244?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz