Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Schlagwörter
  • 1
    Online-Ressource
    Online-Ressource
    KIT Scientific Publishing
    UID:
    almahu_9949711153402882
    Umfang: 1 electronic resource (xviii, 183 p. p.)
    ISBN: 1000076629
    Serie: Karlsruher Forschungsberichte aus dem Institut für Hochfrequenztechnik und Elektronik
    Inhalt: This work describes an optimization concept for mobile antenna systems. The so-called antenna synthesis determines optimal fixed antenna radiation patterns with the help of simulated or measured transmission channels. These radiation patterns increase the spectral efficiency and the reliability of the antenna system compared to conventional antennas with omnidirectional radiation patterns. Therefor the antenna systems are matched as best as possible to the predominant directions of the channel.
    Anmerkung: German
    Weitere Ausg.: ISBN 3-7315-0737-4
    Sprache: Deutsch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Boca Raton, FL :Chapman and Hall/CRC,
    UID:
    almahu_9949386246302882
    Umfang: 1 online resource
    ISBN: 9781000076646 , 1000076644 , 9780429289071 , 0429289073 , 9781000076608 , 1000076601 , 9781000076622 , 1000076628
    Inhalt: Nature-Inspired Optimization Algorithms, a comprehensivework on the most popular optimization algorithms based on nature, starts with an overview of optimizationgoing from the classical to the latest swarm intelligence algorithm. Nature has a rich abundance of flora and fauna that inspired the development of optimization techniques, providing us with simple solutions to complex problems in an effective and adaptive manner. The study of the intelligent survival strategies of animals, birds, and insects in a hostile and ever-changing environment has led to the development of techniques emulating their behavior. This book is a lucid description of fifteen important existing optimization algorithms based on swarm intelligence and superior in performance. It is a valuable resource for engineers, researchers, faculty, and students who are devising optimum solutions to any type of problem rangingfrom computer science to economics andcovering diverse areas that require maximizing output and minimizing resources. This is the crux of all optimization algorithms. Features: Detailed description of the algorithms along with pseudocode and flowchart Easy translation to program code that is also readily available in Mathworks website for some of the algorithms Simple examples demonstrating the optimization strategies are provided to enhance understanding Standard applications and benchmark datasets for testing and validating the algorithms are included This book is a reference for undergraduate and post-graduate students. It will be useful to faculty members teaching optimization. It is also a comprehensive guide for researchers who are looking for optimizing resources in attaining the best solution to a problem. The nature-inspired optimization algorithms are unconventional, and this makes them more efficient than their traditional counterparts.
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Author -- 1 Introduction -- 1.1 Introduction -- 1.2 Fundamentals of Optimization -- 1.3 Types of Optimization Problems -- 1.4 Examples of Optimization -- 1.5 Formulation of Optimization Problem -- 1.6 Classification of Optimization Algorithms -- 1.7 Traveling Salesman Problem and Knapsack Problem -- 1.8 Summary -- 2 Classical Optimization Methods -- 2.1 Introduction -- 2.2 Mathematical Model of Optimization -- 2.3 Linear Programming -- 2.3.1 Simplex Method -- 2.3.2 Revised Simplex Method , 2.3.3 Kamarkar's Method -- 2.3.4 Duality Theorem -- 2.3.5 Decomposition Principle -- 2.3.6 Transportation Problem -- 2.4 Non-Linear Programming -- 2.4.1 Quadratic Programming -- 2.4.2 Geometric Programming -- 2.5 Dynamic Programming -- 2.6 Integer Programming -- 2.7 Stochastic Programming -- 2.8 Lagrange Multiplier Method -- 2.9 Summary -- References -- 3 Nature-Inspired Algorithms -- 3.1 Introduction -- 3.2 Traditional versus Nature-Inspired Algorithms -- 3.3 Bioinspired Algorithms -- 3.4 Swarm Intelligence -- 3.5 Metaheuristics -- 3.6 Diversification and Intensification , 3.7 No Free Lunch Theorem -- 3.8 Parameter Tuning and Control -- 3.9 Algorithm -- 3.10 Pseudocode -- 3.11 Summary -- References -- 4 Genetic Algorithm -- 4.1 Introduction -- 4.2 Basics of Genetic Algorithm -- 4.3 Genetic Operators -- 4.4 Example of GA -- 4.5 Algorithm -- 4.6 Pseudocode -- 4.7 Schema Theory -- 4.8 Prisoner's Dilemma Problem -- 4.9 Variants and Hybrids of GA -- 4.10 Summary -- References -- 5 Genetic Programming -- 5.1 Introduction -- 5.2 Basics of Genetic Programming -- 5.3 Data Structures for Genetic Programming -- 5.4 Binary Tree Traversals -- 5.5 Genetic Programming Operators , 5.6 Genetic Programming Algorithm -- 5.7 Pseudocode -- 5.8 Variants of the Algorithm -- 5.9 Summary -- References -- 6 Particle Swarm Optimization -- 6.1 Introduction -- 6.2 Swarm Behavior -- 6.3 Particle Swarm Optimization -- 6.3.1 Algorithm -- 6.3.2 Pseudocode -- 6.4 Variants of the Algorithm -- 6.5 Summary -- References -- 7 Differential Evolution -- 7.1 Introduction -- 7.2 Differential Evolution -- 7.2.1 Algorithm -- 7.2.2 Pseudocode -- 7.3 Variants of the Algorithm -- 7.4 Summary -- References -- 8 Ant Colony Optimization -- 8.1 Introduction -- 8.2 Ant Colony Characteristics , 8.3 Ant Colony Optimization -- 8.3.1 Traveling Salesman Problem -- 8.3.2 Algorithm -- 8.3.3 Pseudocode -- 8.4 Variants of the Algorithm -- 8.5 Summary -- References -- 9 Bee Colony Optimization -- 9.1 Introduction -- 9.2 Honey Bee Characteristics -- 9.3 Bee Colony Optimization -- 9.3.1 Algorithm -- 9.3.2 Pseudocode -- 9.4 Variants of the Algorithm -- 9.5 Summary -- References -- 10 Fish School Search Algorithm -- 10.1 Introduction -- 10.2 Fish School Behavior -- 10.3 Fish School Search Optimization -- 10.3.1 Algorithm -- 10.3.2 Pseudocode -- 10.4 Variants and Applications -- 10.5 Summary
    Weitere Ausg.: Print version: ISBN 0367503298
    Weitere Ausg.: ISBN 9780367503291
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 1000067629?
Meinten Sie 1000073629?
Meinten Sie 1000076229?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz