Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Die Antwortzeit im Portal kann derzeit länger als üblich sein. Wir bitten um Entschuldigung.
Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Schlagwörter
  • 1
    Online-Ressource
    Online-Ressource
    London, [England] ; : ISTE :
    UID:
    almatuudk_9923020803902884
    Umfang: 1 online resource (815 p.)
    Ausgabe: Revised and updated second edition.
    ISBN: 1-119-01519-7 , 1-119-00535-3 , 1-119-01516-2
    Serie: Mathematics and Statistics Series
    Inhalt: Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization.Concepts of Combinatorial Optimization, is divided into three parts:- On the complexity of combinatorial optimization problems, presenting basics about worst-case and random
    Anmerkung: Description based upon print version of record. , Cover; Title Page; Copyright; Contents; Preface; PART I: Paradigmatic Problems; Chapter 1: Optimal Satisfiability; 1.1. Introduction; 1.2. Preliminaries; 1.2.1. Constraint satisfaction problems: decision and optimization versions; 1.2.2. Constraint types; 1.3. Complexity of decision problems; 1.4. Complexity and approximation of optimization problems; 1.4.1. Maximization problems; 1.4.2. Minimization problems; 1.5. Particular instances of constraint satisfaction problems; 1.5.1. Planar instances; 1.5.2. Dense instances; 1.5.3. Instances with a bounded number of occurrences , 1.6. Satisfiability problems under global constraints 1.7. Conclusion; 1.8. Bibliography; Chapter 2: Scheduling Problems; 2.1. Introduction; 2.2. New techniques for approximation; 2.2.1. Linear programming and scheduling; 2.2.1.1. Single machine problems; 2.2.1.2. Problems with m machines; 2.2.2. An approximation scheme for P||Cmax; 2.3. Constraints and scheduling; 2.3.1. The monomachine constraint; 2.3.2. The cumulative constraint; 2.3.3. Energetic reasoning; 2.4. Non-regular criteria; 2.4.1. PERT with convex costs; 2.4.1.1. The equality graph and its blocks; 2.4.1.2. Generic algorithm , 2.4.1.3. Complexity of the generic algorithm 2.4.2. Minimizing the early-tardy cost on one machine; 2.4.2.1. Special cases; 2.4.2.2. The lower bound; 2.4.2.3. The branch-and-bound algorithm; 2.4.2.4. Lower bounds in a node of the search tree; 2.4.2.5. Upper bound; 2.4.2.6. Branching rule; 2.4.2.7. Dominance rules; 2.4.2.8. Experimental results; 2.5. Bibliography; Chapter 3: Location Problems; 3.1. Introduction; 3.1.1. Weber's problem; 3.1.2. A classification; 3.2. Continuous problems; 3.2.1. Complete covering; 3.2.2. Maximal covering; 3.2.2.1. Fixed radius; 3.2.2.2. Variable radius , 3.2.3. Empty covering 3.2.4. Bicriteria models; 3.2.5. Covering with multiple resources; 3.3. Discrete problems; 3.3.1. p-Center; 3.3.2. p-Dispersion; 3.3.3. p-Median; 3.3.3.1. Fixed charge; 3.3.4. Hub; 3.3.5. p-Maxisum; 3.4. On-line problems; 3.5. The quadratic assignment problem; 3.5.1. Definitions and formulations of the problem; 3.5.2. Complexity; 3.5.3. Relaxations and lower bounds; 3.5.3.1. Linear relaxations; 3.5.3.2. Semi-definite relaxations; 3.5.3.3. Convex quadratic relaxations; 3.6. Conclusion; 3.7. Bibliography; Chapter 4: Mini Max Algorithms and Games; 4.1. Introduction , 4.2. Games of no chance: the simple cases 4.3. The case of complex no chance games; 4.3.1. Approximative evaluation; 4.3.2. Horizon effect; 4.3.3. α-β pruning; 4.4. Quiescence search; 4.4.1. Other refinements of the Mini Max algorithm; 4.5. Case of games using chance; 4.6. Conclusion; 4.7. Bibliography; Chapter 5: Two-dimensional Bin Packing Problems; 5.1. Introduction; 5.2. Models; 5.2.1. ILP models for level packing; 5.3. Upper bounds; 5.3.1. Strip packing; 5.3.2. Bin packing: two-phase heuristics; 5.3.3. Bin packing: one-phase level heuristics , 5.3.4. Bin packing: one-phase non-level heuristics , English
    Weitere Ausg.: ISBN 1-84821-657-2
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    London :Wiley,
    UID:
    edocfu_9959328279202883
    Umfang: 1 online resource (722 pages)
    ISBN: 9781118600276 , 1118600274 , 9781118600207 , 1118600207 , 9781118600184 , 1118600185 , 1322060878 , 9781322060873 , 9781119015192 , 1119015197
    Serie: ISTE
    Inhalt: Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. "Paradigms of Combinatorial Optimization" is divided in two parts: Paradigmatic Problems, that handles several famous combinatorial optimization probl.
    Anmerkung: Cover; Paradigms of Combinatorial Optimization; Title Page; Copyright Page; Table of Contents; Preface; PART I. PARADIGMATIC PROBLEMS; Chapter 1. Optimal Satisfiability; 1.1. Introduction; 1.2. Preliminaries; 1.2.1. Constraint satisfaction problems: decision and optimization versions; 1.2.2. Constraint types; 1.3. Complexity of decision problems; 1.4. Complexity and approximation of optimization problems; 1.4.1. Maximization problems; 1.4.2. Minimization problems; 1.5. Particular instances of constraint satisfaction problems; 1.5.1. Planar instances; 1.5.2. Dense instances. , Chapter 3. Location Problems3.1. Introduction; 3.1.1. Weber's problem; 3.1.2. A classification; 3.2. Continuous problems; 3.2.1. Complete covering; 3.2.2. Maximal covering; 3.2.3. Empty covering; 3.2.4. Bicriteria models; 3.2.5. Covering with multiple resources; 3.3. Discrete problems; 3.3.1. p-Center; 3.3.2. p-Dispersion; 3.3.3. p-Median; 3.3.4. Hub; 3.3.5. p-Maxisum; 3.4. On-line problems; 3.5. The quadratic assignment problem; 3.5.1. Definitions and formulations of the problem; 3.5.2. Complexity; 3.5.3. Relaxations and lower bounds; 3.6. Conclusion; 3.7. Bibliography. , 5.3.3. Bin packing: one-phase level heuristics5.3.4. Bin packing: one-phase non-level heuristics; 5.3.5. Metaheuristics; 5.3.6. Approximation algorithms; 5.4. Lower bounds; 5.4.1. Lower bounds for level packing; 5.5. Exact algorithms; 5.6. Acknowledgements; 5.7. Bibliography; Chapter 6. The Maximum Cut Problem; 6.1. Introduction; 6.2. Complexity and polynomial cases; 6.3. Applications; 6.3.1. Spin glass models; 6.3.2. Unconstrained 0-1 quadratic programming; 6.3.3. The via minimization problem; 6.4. The cut polytope; 6.4.1. Valid inequalities and separation; 6.4.2. Branch-and-cut algorithms.
    Weitere Ausg.: Print version: Paschos, Vangelis Th. Paradigms of Combinatorial Optimization : Problems and New Approaches. London : Wiley, ©2013 ISBN 9781848211483
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    London :Wiley,
    UID:
    almafu_9959328279202883
    Umfang: 1 online resource (722 pages)
    ISBN: 9781118600276 , 1118600274 , 9781118600207 , 1118600207 , 9781118600184 , 1118600185 , 1322060878 , 9781322060873 , 9781119015192 , 1119015197
    Serie: ISTE
    Inhalt: Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. "Paradigms of Combinatorial Optimization" is divided in two parts: Paradigmatic Problems, that handles several famous combinatorial optimization probl.
    Anmerkung: Cover; Paradigms of Combinatorial Optimization; Title Page; Copyright Page; Table of Contents; Preface; PART I. PARADIGMATIC PROBLEMS; Chapter 1. Optimal Satisfiability; 1.1. Introduction; 1.2. Preliminaries; 1.2.1. Constraint satisfaction problems: decision and optimization versions; 1.2.2. Constraint types; 1.3. Complexity of decision problems; 1.4. Complexity and approximation of optimization problems; 1.4.1. Maximization problems; 1.4.2. Minimization problems; 1.5. Particular instances of constraint satisfaction problems; 1.5.1. Planar instances; 1.5.2. Dense instances. , Chapter 3. Location Problems3.1. Introduction; 3.1.1. Weber's problem; 3.1.2. A classification; 3.2. Continuous problems; 3.2.1. Complete covering; 3.2.2. Maximal covering; 3.2.3. Empty covering; 3.2.4. Bicriteria models; 3.2.5. Covering with multiple resources; 3.3. Discrete problems; 3.3.1. p-Center; 3.3.2. p-Dispersion; 3.3.3. p-Median; 3.3.4. Hub; 3.3.5. p-Maxisum; 3.4. On-line problems; 3.5. The quadratic assignment problem; 3.5.1. Definitions and formulations of the problem; 3.5.2. Complexity; 3.5.3. Relaxations and lower bounds; 3.6. Conclusion; 3.7. Bibliography. , 5.3.3. Bin packing: one-phase level heuristics5.3.4. Bin packing: one-phase non-level heuristics; 5.3.5. Metaheuristics; 5.3.6. Approximation algorithms; 5.4. Lower bounds; 5.4.1. Lower bounds for level packing; 5.5. Exact algorithms; 5.6. Acknowledgements; 5.7. Bibliography; Chapter 6. The Maximum Cut Problem; 6.1. Introduction; 6.2. Complexity and polynomial cases; 6.3. Applications; 6.3.1. Spin glass models; 6.3.2. Unconstrained 0-1 quadratic programming; 6.3.3. The via minimization problem; 6.4. The cut polytope; 6.4.1. Valid inequalities and separation; 6.4.2. Branch-and-cut algorithms.
    Weitere Ausg.: Print version: Paschos, Vangelis Th. Paradigms of Combinatorial Optimization : Problems and New Approaches. London : Wiley, ©2013 ISBN 9781848211483
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 1119011590?
Meinten Sie 1118015177?
Meinten Sie 1118015193?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz