Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Keywords
  • 1
    UID:
    almafu_9959328134102883
    Format: 1 online resource
    ISBN: 9781119041412 , 1119041414 , 9781119041405 , 1119041406 , 9781119041399 , 1119041392 , 9781119041474 , 1119041473
    Content: Polymers are one of the most fascinating materials of the present era finding their applications in almost every aspects of life. Polymers are either directly available in nature or are chemically synthesized and used depending upon the targeted applications. Advances in polymer science and the introduction of new polymers have resulted in the significant development of polymers with unique properties. Different kinds of polymers have been and will be one of the key in several applications in many of the advanced pharmaceutical research being carried out over the globe. This 4-partset of books contains precisely referenced chapters, emphasizing different kinds of polymers with basic fundamentals and practicality for application in diverse pharmaceutical technologies. The volumes aim at explaining basics of polymers based materials from different resources and their chemistry along with practical applications which present a future direction in the pharmaceutical industry. Each volume offer deep insight into the subject being treated. Volume 1: Structure and ChemistryVolume 2: Processing and ApplicationsVolume 3: Biodegradable PolymersVolume 4: Bioactive and Compatible Synthetic/Hybrid Polymers.
    Note: Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Particle Engineering of Polymers into Multifunctional Interactive Excipients -- 1.1 Introduction -- 1.2 Polymers as Excipients -- 1.3 Material Properties Affecting Binder Activity -- 1.3.1 Particle Size -- 1.3.2 Deformation Mechanisms -- 1.3.3 Glass Transition Temperature (Tg) -- 1.4 Strategies for Improving Polymeric Filler-Binder Performance for Direct Compression -- 1.4.1 Interactive Mixing -- 1.4.2 Challenges to Interactive Mixing -- 1.4.3 Controlling Interparticle Cohesion -- 1.5 Preparation and Characterization of Interactive Excipients -- 1.5.1 Particle Size and Size Distribution of Excipients -- 1.5.2 Effect of L-leucine on Surface Morphology -- 1.5.3 Effect of L-leucine on Surface Composition -- 1.5.4 Effect of L-leucine on Surface Energy -- 1.5.5 Effect of L-leucine on Interparticle Cohesion -- 1.6 Performance of Interactive Excipients -- 1.6.1 Blending Ability -- 1.6.2 Effect on Flow -- 1.6.3 Binder Activity -- 1.7 Investigation of the Effect of Polymer Mechanical Properties -- 1.8 Conclusion -- References -- 2 The Art of Making Polymeric Membranes -- 2.1 Introduction -- 2.2 Types of Membranes -- 2.2.1 Porous Membranes -- 2.2.2 Nonporous Membranes -- 2.2.3 Liquid Membranes (Carrier Mediated Transport) -- 2.2.4 Asymmetric Membranes -- 2.3 Preparation of Membranes -- 2.3.1 Phase Inversion/Separation -- 2.3.2 Vapor-Induced Phase Separation (VIPS) -- 2.3.3 Thermally-Induced Phase Separation (TIPS) -- 2.3.4 Immersion Precipitation -- 2.3.5 Film/Dry Casting Technique -- 2.3.6 Track Etching -- 2.3.7 Electrospinning -- 2.3.7.1 Preparation of Electrospun Nanofiber Membranes (ENMs) with Single Component -- 2.3.7.2 Preparation of Nanofibers with Two Side-by-Side Components -- 2.3.7.3 Preparation of Core-Sheath and Hollow Nanofibers -- 2.3.8 Spraying -- 2.3.9 Foaming. , 2.3.10 Particle Leaching -- 2.3.11 Precipitation from the Vapor Phase -- 2.3.12 Emulsion Freeze-Drying -- 2.3.13 Sintering -- 2.3.14 Stretching -- 2.3.15 Composite/Supported -- 2.3.16 Mixed Matrix Membranes (MMMs) -- 2.3.17 Hollow Fiber Membranes -- 2.3.17.1 Methods for Spinning -- 2.3.18 Metal-Organic Frameworks (MOFs) -- 2.4 Modification of Membranes -- 2.4.1 Modification of Polymeric Membrane by Additives/Blending -- 2.4.2 Coating -- 2.4.3 Surface Modification by Chemical Reaction -- 2.4.4 Interfacial Polymerization (IP)/Copolymerization -- 2.4.5 Plasma Polymerization/Treatment -- 2.4.6 Surface Modification by Irradiation of High Energy Particles -- 2.4.7 UV Irradiation -- 2.4.8 Ion-Beam Irradiation -- 2.4.9 Surface Modification by Heat Treatment -- 2.4.10 Graft Polymerization/Grafting -- 2.4.11 Other Techniques -- 2.5 Characterization of Membrane by Different Techniques -- 2.5.1 Conventional Physical Methods to Determine Pore Size and Pore Size Distribution -- 2.5.1.1 Bubble Gas Transport Method -- 2.5.1.2 Mercury Intrusion Porosimetry -- 2.5.1.3 Gas Liquid Equilibrium Method (Permporometry) -- 2.5.1.4 Adsorption-Desorption Method: Barett-Joyner-Halenda (BJH) Method -- 2.5.1.5 Permeability Methods -- 2.5.2 Morphology -- 2.5.2.1 Microscopic Method -- 2.5.2.2 Spectroscopic Method -- 2.5.2.3 Positron Annihilation Spectroscopy (PAL) -- 2.5.2.4 X-Ray Analysis and Other Methods -- 2.5.3 Thermal Properties -- 2.5.4 Mechanical Properties -- 2.5.4.1 Tensile Strength -- 2.5.4.2 Young's Modulus or Tensile Modulus of Elasticity -- 2.6 Summary -- References -- 3 Development of Microstructuring Technologies of Polycarbonate for Establishing Advanced Cell Cultivation Systems -- 3.1 Introduction -- 3.2 Material Properties of Polycarbonate -- 3.2.1 Physical Properties -- 3.2.2 Chemical Properties -- 3.2.3 Biological Properties. , 3.3 Use of Polycarbonate Foils in Structuration Processes -- 3.3.1 Hot Embossing -- 3.3.2 Thermoforming -- 3.4 Simulation of Microstructuring of a Polycarbonate Foil -- 3.5 Chemical Functionalization of Polycarbonate -- 3.6 Surface Micropatterning of Polycarbonate -- 3.7 Application Examples -- 3.7.1 3D Liver Cell Cultivation in Polycarbonate Scaffolds -- 3.7.2 3D Lung Cell Cultivation in Semi-Actively Perfused Systems -- 3.7.3 Guiding 3D Cocultivation of Cells by Micropatterning Techniques -- 3.8 Conclusion and Further Perspectives -- Acknowledgements -- References -- 4 In-Situ Gelling Thermosensitive Hydrogels for Protein Delivery Applications -- 4.1 Introduction -- 4.2 Polymers for the Design of Hydrogels -- 4.2.1 Polymer Architectures -- 4.2.2 Natural, Synthetic and Hybrid Hydrogels -- 4.2.3 Crosslinking Methods -- 4.2.4 Thermogelling Polymer Hydrogels -- 4.3 Pharmaceutical Applications of Hydrogels: Protein Delivery -- 4.3.1 Strategies for Protein Release from Hydrogels -- 4.3.1.1 Physical Entrapment of Proteins into Hydrogels: General Principles and Release Mechanisms -- 4.3.1.2 Covalent Binding -- 4.3.1.3 Dual/Multiple Delivery Systems -- 4.4 Application of Hydrogels for Protein Delivery in Tissue Engineering -- 4.5 Conclusions -- References -- 5 Polymers as Formulation Excipients for Hot-Melt Extrusion Processing of Pharmaceuticals -- 5.1 Introduction -- 5.1.1 Overview of Hot-Melt Extrusion (HME) -- 5.1.2 Solubility/Dissolution Enhancement by Solid Dispersions -- 5.2 Polymers for HME Processing -- 5.2.1 Basic Requirements -- 5.2.2 Suitability -- Examples -- 5.3 Polymer Selection for the HME Process -- 5.3.1 Thermodynamic Considerations -- Drug-Polymer Solubility and Miscibility -- 5.4 Processing of HME Formulations -- 5.4.1 Physical Properties of Feeding Material -- Flowability, Packing and Friction -- 5.4.1.1 Crystallinity. , 5.4.1.2 Molecular Weight and Viscosity -- 5.5 Improvements in Processing -- 5.5.1 Equipment Modifications -- 5.5.2 Plasticizers -- 5.5.2.1 Drugs Acting as Plasticizers -- 5.2.2.2 Extrusion Based on Use of Plasticizers -- 5.6 Conclusion and Future Perspective -- References -- 6 Poly Lactic-Co-Glycolic Acid (PLGA) Copolymer and Its Pharmaceutical Application -- 6.1 Introduction -- 6.2 Physicochemical Properties -- 6.3 Biodegradation -- 6.4 Biocompatibiliy, Toxicty and Pharmacokinetics -- 6.5 Mechanism of Drug Release -- 6.6 PLGA-Based DDS -- 6.7 Bone Regeneration -- 6.8 Pulmonary Delivery -- 6.9 Gene Therapy -- 6.10 Tumor Trageting -- 6.11 Miscellaneous Drug Delivery Applications -- 6.12 Conclusion -- References -- 7 Pharmaceutical Applications of Polymeric Membranes -- 7.1 Introduction -- 7.2 Obtaining Pure and Ultrapure Water for Pharmaceutical Usage -- 7.3 Wastewater Treatment for Pharmaceutics -- 7.4 Controlled Drug Delivery Devices Based on Membrane Materials -- 7.5 Molecularly Imprinted Membranes -- 7.6 Conclusions -- References -- 8 Application of PVC in Construction of Ion-Selective Electrodes for Pharmaceutical Analysis: A Review of Polymer Electrodes for Nonsteroidal, Anti-Inflammatory Drugs -- 8.1 Introduction -- 8.2 Properties and Usage of Poly(vinyl)chloride (PVC) -- 8.3 PVC Application and Properties in Construction of Potentiometric Sensors for Drug Detection -- 8.3.1 Role of Polymer Membrane Components -- 8.4 Ion-Selective, Classic, Liquid Electrodes (ISEs) -- 8.5 Ion-Selective Solid-State Electrodes -- 8.5.1 Ion-Selective Coated-Wire Electrodes (CWE) -- 8.5.2 Ion-Selective BMSA Electrodes -- 8.5.3 Electrodes Based on Conductive Polymers (SC-ISEs) -- 8.6 Application of Polymer-Based ISEs for Determination of Analgetic, Anti-Inflammatory and Antipyretic Drugs: Literature Review (2000-2014). , 8.6.1 Electrodes for Determination of Narcotic Medicines -- 8.6.2 Electrode Sensitive to Dextromethorphan -- 8.6.3 Electrode Sensitive to Tramadol -- 8.6.4 Electrodes for Determination of Non-Narcotic Drugs -- 8.6.5 Salicylate Electrode -- 8.6.6 Ibuprofen Electrode -- 8.6.7 Ketoprofen Electrodes -- 8.6.8 Piroxicam Electrode -- 8.6.9 Tenoxicam Electrode -- 8.6.10 Naproxen Electrodes -- 8.6.11 Indomethacin Electrodes -- 8.6.12 Sulindac Electrode -- 8.6.13 Diclofenac Electrodes -- 8.7 Conclusion -- References -- 9 Synthesis and Preservation of Polymer Nanoparticles for Pharmaceutical Applications -- 9.1 Introduction: Polymer Nanoparticles Production -- 9.2 Production of Polymer Nanoparticles by Solvent Displacement Using Intensive Mixers -- 9.2.1 Influence of Polymer-Solvent Type and Hydrodynamics on Particle Size -- 9.2.2 Dependence on Operating Conditions -- Polymer and Drug Concentration, Solvent/Antisolvent Ratio, Processing Conditions -- 9.2.3 Process Design: Selection of Mixing Device, Scale Up and Process Transfer -- 9.3 Freeze-Drying of Nanoparticles -- 9.4 Conclusions and Perspectives -- Acknowledgements -- References -- 10 Pharmaceutical Applications of Maleic Anhydride/Acid Copolymers -- 10.1 Introduction -- 10.2 Maleic Copolymers as Macromolecular Drugs -- 10.3 Maleic Copolymer Conjugates -- 10.3.1 Polymer-Protein Conjugates -- 10.3.2 Polymer-Drug Conjugates -- 10.4 Noncovalent Drug Delivery Systems -- 10.4.1 Enteric Coatings -- 10.4.2 Solid Dispersions -- 10.4.3 Polymeric Films and Hydrogels -- 10.4.4 Microspheres and Microcapsules -- 10.4.5 Nanoparticles -- 10.4.6 Micelles -- 10.5 Conclusion -- References -- 11 Stimuli-Sensitive Polymeric Nanomedicines for Cancer Imaging and Therapy -- 11.1 Introduction -- 11.2 Pathophysiological and Physical Triggers -- 11.2.1 Acidosis -- 11.2.1.1 pH-Sensitive Tumor Imaging.
    Additional Edition: Print version: Handbook of polymers for pharmaceutical technologies. Volume 2, Processing and applications. Hoboken, New Jersey : Wiley, [2015] ISBN 9781119041382
    Additional Edition: ISBN 1119041384
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hoboken, New Jersey ; : John Wiley & Sons :
    UID:
    almahu_9948320266702882
    Format: 1 online resource (490 pages)
    ISBN: 9781119041405 (e-book)
    Additional Edition: Print version: Handbook of polymers for pharmaceutical technologies. Volume 2, Processing and applications. Hoboken, New Jersey ; Salem, Massachusetts : John Wiley & Sons : Scrivener Publishing LLC, c2015. ISBN 9781119041382
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 1119001374?
Did you mean 1119001382?
Did you mean 1119011388?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages