Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Keywords
  • 1
    UID:
    almahu_9949616042002882
    Format: 1 online resource (xxiv, 328 pages) : , illustrations (some color)
    ISBN: 9781119137276 , 1119137276 , 9781119137290 , 1119137292 , 9781119137252 , 111913725X
    Content: "With the advent of more affordable, higher resolution or innovative data acquisition techniques, chemical analysis has been using progressively advanced signal and image processing tools. Indeed, both specialities (analytical chemistry and signal processing) share similar values of best practice in carrying out identifications and comprehensive characterizations, be they of chemical samples or of numerical data. Signal and image processing, for instance, often breaks down data into atoms, molecules, with specific decompositions and priors, as common in chemistry. Many problems in chemical engineering can be addressed with classical or advanced methods of signal and image processing, through topics such as chemical analysis leading to PARAFAC/tensor methods, hyper spectral imaging, ion-sensitive sensors, artificial noise, chromatography, mass spectrometry, TEP imaging, etc."--
    Note: Intro -- Table of Contents -- Title Page -- Copyright -- About the Editors -- List of Contributors -- Foreword -- Preface -- Notation -- 1 Overview of Source Separation -- 1.1 Introduction -- 1.2 The Problem of Source Separation -- 1.3 Statistical Methods for Source Separation -- 1.4 Source Separation Problems in Physical-Chemical Sensing -- 1.5 Source Separation Methods for Chemical-Physical Sensing -- 1.6 Organization of the Book -- References -- Notes -- 2 Optimization -- 2.1 Introduction to Optimization Problems -- 2.2 Majorization-Minimization Approaches -- 2.3 Primal-Dual Methods , 2.4 Application to NMR Signal Restoration -- 2.5 Conclusion -- References -- Notes -- 3 Non-negative Matrix Factorization -- 3.1 Introduction -- 3.2 Geometrical Interpretation of NMF and the Non-negative Rank -- 3.3 Uniqueness and Admissible Solutions of NMF -- 3.4 Non-negative Matrix Factorization Algorithms -- 3.5 Applications of NMF in Chemical Sensing. Two Examples of Reducing Admissible Solutions -- 3.6 Conclusions -- References -- 4 Bayesian Source Separation -- 4.1 Introduction -- 4.2 Overview of Bayesian Source Separation -- 4.3 Statistical Models for the Separation in the Linear Mixing , 4.4 Statistical Models and Separation Algorithms for Nonlinear Mixtures -- 4.5 Some Practical Issues on Algorithm Implementation -- 4.6 Applications to Case Studies in Chemical Sensing -- 4.7 Conclusion -- Appendix 4.AImplementation of Function postsourcesrnd via Metropolis-Hasting Algorithm -- References -- Notes -- 5 Geometrical Methods -- Illustration with Hyperspectral Unmixing -- 5.1 Introduction -- 5.2 Hyperspectral Sensing -- 5.3 Hyperspectral Mixing Models -- 5.4 Linear HU Problem Formulation -- 5.5 Dictionary-Based Semiblind HU -- 5.6 Minimum Volume Simplex Estimation -- 5.7 Applications , 5.8 Conclusions -- References -- Notes -- 6 Tensor Decompositions: Principles and Application to Food Sciences -- 6.1 Introduction -- 6.2 Tensor Decompositions -- 6.3 Constraints in Decompositions -- 6.4 Coupled Decompositions -- 6.5 Algorithms -- 6.6 Applications -- References -- Notes -- Index -- End User License Agreement
    Additional Edition: Print version: Source separation in physical-chemical sensing Hoboken, NJ : Wiley, 2024 ISBN 9781119137221
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_9961367875702883
    Format: 1 online resource
    ISBN: 9781119137276 , 1119137276 , 9781119137290 , 1119137292 , 111913725X , 9781119137252
    Series Statement: IEEE Press Series
    Content: "With the advent of more affordable, higher resolution or innovative data acquisition techniques, chemical analysis has been using progressively advanced signal and image processing tools. Indeed, both specialities (analytical chemistry and signal processing) share similar values of best practice in carrying out identifications and comprehensive characterizations, be they of chemical samples or of numerical data. Signal and image processing, for instance, often breaks down data into atoms, molecules, with specific decompositions and priors, as common in chemistry. Many problems in chemical engineering can be addressed with classical or advanced methods of signal and image processing, through topics such as chemical analysis leading to PARAFAC/tensor methods, hyper spectral imaging, ion-sensitive sensors, artificial noise, chromatography, mass spectrometry, TEP imaging, etc."--
    Note: Intro -- Table of Contents -- Title Page -- Copyright -- About the Editors -- List of Contributors -- Foreword -- Preface -- Notation -- 1 Overview of Source Separation -- 1.1 Introduction -- 1.2 The Problem of Source Separation -- 1.3 Statistical Methods for Source Separation -- 1.4 Source Separation Problems in Physical-Chemical Sensing -- 1.5 Source Separation Methods for Chemical-Physical Sensing -- 1.6 Organization of the Book -- References -- Notes -- 2 Optimization -- 2.1 Introduction to Optimization Problems -- 2.2 Majorization-Minimization Approaches -- 2.3 Primal-Dual Methods , 2.4 Application to NMR Signal Restoration -- 2.5 Conclusion -- References -- Notes -- 3 Non-negative Matrix Factorization -- 3.1 Introduction -- 3.2 Geometrical Interpretation of NMF and the Non-negative Rank -- 3.3 Uniqueness and Admissible Solutions of NMF -- 3.4 Non-negative Matrix Factorization Algorithms -- 3.5 Applications of NMF in Chemical Sensing. Two Examples of Reducing Admissible Solutions -- 3.6 Conclusions -- References -- 4 Bayesian Source Separation -- 4.1 Introduction -- 4.2 Overview of Bayesian Source Separation -- 4.3 Statistical Models for the Separation in the Linear Mixing , 4.4 Statistical Models and Separation Algorithms for Nonlinear Mixtures -- 4.5 Some Practical Issues on Algorithm Implementation -- 4.6 Applications to Case Studies in Chemical Sensing -- 4.7 Conclusion -- Appendix 4.AImplementation of Function postsourcesrnd via Metropolis-Hasting Algorithm -- References -- Notes -- 5 Geometrical Methods -- Illustration with Hyperspectral Unmixing -- 5.1 Introduction -- 5.2 Hyperspectral Sensing -- 5.3 Hyperspectral Mixing Models -- 5.4 Linear HU Problem Formulation -- 5.5 Dictionary-Based Semiblind HU -- 5.6 Minimum Volume Simplex Estimation -- 5.7 Applications , 5.8 Conclusions -- References -- Notes -- 6 Tensor Decompositions: Principles and Application to Food Sciences -- 6.1 Introduction -- 6.2 Tensor Decompositions -- 6.3 Constraints in Decompositions -- 6.4 Coupled Decompositions -- 6.5 Algorithms -- 6.6 Applications -- References -- Notes -- Index -- End User License Agreement
    Additional Edition: Print version: Source separation in physical-chemical sensing Hoboken, NJ : Wiley, 2024 ISBN 9781119137221
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 1119113776?
Did you mean 1119107776?
Did you mean 1119127246?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages