Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Schlagwörter
  • 1
    Online-Ressource
    Online-Ressource
    Hoboken, NJ :John Wiley and Sons, Inc.,
    UID:
    almafu_9959328725402883
    Umfang: 1 online resource : , illustrations
    ISBN: 9781119178408 , 1119178401 , 1848218613 , 9781848218611 , 9781119178392 , 1119178398
    Serie: Waves Series
    Inhalt: This didactic book presents the main elements of acoustics, aeroacoustics and vibrations. Illustrated with numerous concrete examples linked to solid and fluid continua, Acoustics, Aeroacoustics and Vibrations proposes a selection of applications encountered in the three fields, whether in room acoustics, transport, energy production systems or environmental problems. Theoretical approaches enable us to analyze the different processes in play. Typical results, mostly from numerical simulations, are used to illustrate the main phenomena (fluid acoustics, radiation, diffraction, vibroacoustics, etc.).
    Anmerkung: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1: A Bit of History -- 1.1. The production of sound -- 1.2. The propagation of sound -- 1.3. The reception of sound -- 1.4. Aeroacoustics -- Chapter 2: Elements of Continuum Mechanics -- 2.1. Mechanics of deformable media -- 2.1.1. Continuum -- 2.1.2. Kinematics of deformable media -- 2.1.2.1. Lagrange's kinematics -- 2.1.2.2. Euler's kinematics -- 2.1.2.3. Kinematics of a surface -- 2.1.2.4. Material derivatives -- 2.1.3. Deformation tensor (or Green's tensor) -- 2.2. Conservation laws -- 2.2.1. Conservation of mass -- 2.2.2. Conservation of momentum -- 2.2.3. Conservation of energy -- 2.3. Constitutive laws -- 2.3.1. Elasticity -- 2.3.1.1. Stress-deformation tensor -- 2.3.1.2. Infinitesimal strain tensor -- 2.3.2. Thermoelasticity and effects of temperature variations -- 2.3.3. Viscoelasticity -- 2.3.3.1. Partial differential operator -- 2.3.3.1.1. Elementary models -- 2.3.3.2. Convolution operator -- 2.3.4. Fluid medium -- 2.4. Hamilton principle -- 2.5. Characteristics of materials -- Chapter 3: Small Mathematics Travel Kit -- 3.1. Measure theory and Lebesgue integration -- 3.1.1. Boolean algebra -- 3.1.2. Measure on a 〈U+0076〉-algebra -- 3.1.3. Convergence and integration of measurable functions -- 3.1.4. Functional space -- functional -- 3.1.5. Measure as linear functional -- 3.2. Distributions -- 3.2.1. The space D of test functions -- 3.2.2. Distributions definition -- 3.2.3. Operations on distributions -- 3.2.4. N-dimensional generalization -- 3.2.5. Distributions tensor product -- 3.3. Convolution -- 3.3.1. Definition and first properties -- 3.3.2. Convolution algebra and Green's function -- 3.4. Modal methods -- 3.4.1. Eigenmodes of a conservative system -- 3.4.2. Eigenmodes of a non-conservative system -- 3.4.2.1. Eigenmodes-resonance modes. , 3.4.2.2. Series expansion of resonance modes -- 3.4.2.3. Damped beam -- 3.4.2.4. Eigenmodes and resonance modes -- 3.4.2.4.1. Norm and scalar product -- Chapter 4: Fluid Acoustics -- 4.1. Acoustics equations -- 4.1.1. Conservation equations -- 4.1.2. Establishment of general equations -- 4.1.3. Establishment of the wave equation -- 4.1.4. Velocity potential -- 4.2. Propagation and general solutions -- 4.2.1. One-dimensional motion -- 4.2.2. Three-dimensional motion -- 4.3. Permanent regime: Helmholtz equation -- 4.3.1. General solutions -- 4.3.1.1. One-dimensional motion -- 4.3.1.2. Two-dimensional motion -- 4.3.1.3. Three-dimensional motion -- 4.3.1.4. Acoustic intensity -- 4.3.2. Green's kernels -- 4.3.3. Wave group, phase velocity and group velocity -- 4.4. Discontinuity equations -- 4.4.1. Interface between two propagating media -- 4.4.2. Interface between a propagating and a non-propagating medium -- 4.5. Impedance: measurement and model -- 4.5.1. Kundt's tube -- 4.5.2. Delany-Bazley model -- 4.6. Homogeneous anisotropic medium -- 4.7. Medium with a slowly varying celerity -- 4.8. Media in motion -- 4.8.1. Homogeneous medium in uniform motion -- 4.8.1.1. Continuity condition for normal displacements -- 4.8.1.2. Green's kernel -- 4.8.2. Plane interface between media in motion -- 4.8.3. Cylindrical interface between media in motion -- 4.8.4. Acoustic radiation of a moving surface -- 4.8.4.1. Geometry and notations -- 4.8.4.2. Equation for wave propagation on the outside of the moving surface -- 4.8.4.3. Green's representation for a sheared jet -- 4.8.4.4. Acoustic field radiated by the cylinder -- 4.8.4.5. Pipe directivity -- 4.8.4.6. Results -- Chapter 5: Radiation, Diffraction, Enclosed Space -- 5.1. Acoustic radiation -- 5.1.1. A simple example -- 5.2. Acoustic radiation of point sources -- 5.2.1. Multipolar sources in a harmonic regime. , 5.2.2. Far-field -- 5.3. Radiation of distributed sources -- 5.3.1. Layer potentials -- 5.3.1.1. Simple layer potential -- 5.3.1.2. Double layer potential -- 5.3.2. Green's representation of pressure and introduction to the theory of diffraction -- 5.3.2.1. Green's formula -- 5.3.2.2. Green's representation -- 5.3.2.3. Solving integral equations -- 5.4. Acoustic radiation of a piston in a plane -- 5.4.1. Far-field radiation of a circular piston: directivity -- 5.4.2. Radiation along the axis of a circular piston -- 5.5. Acoustic radiation of a rectangular baffled structure -- 5.6. Acoustic radiation of moving sources -- 5.6.1. Compact and non-compact sources -- 5.6.1.1. Spatially compact source -- 5.6.1.2. Spatially non-compact source (M 〈U+00bb〉 1) -- 5.6.1.3. The case of the flow source -- 5.6.2. Sources in uniform and non-uniform motion -- 5.6.2.1. Doppler effect -- 5.6.2.2. Shock waves -- 5.7. Sound propagation in a bounded medium -- 5.7.1. Eigenfrequencies and resonance frequencies -- 5.7.2. The Helmholtz resonator -- 5.7.3. Example in dimension 1 -- 5.7.4. Example in dimension 3 -- 5.7.5. Propagation of pure sound in a circular enclosure -- 5.7.5.1. Direct integration methods -- 5.7.5.1.1. Separation of variables -- 5.7.5.1.2. Direct integration -- 5.7.5.2. Method of integration by integral equations -- 5.7.5.2.1. Green's representation -- 5.8. Basics of room acoustics -- 5.8.1. The concept of acoustic power -- 5.8.2. Directivity index -- 5.8.3. Reverberation duration -- 5.8.4. Reverberant fields -- 5.8.5. Pressure level in rooms -- 5.8.6. Crossover frequency and the reverberation distance -- 5.9. Sound propagation in a wave guide -- 5.9.1. General solution in a wave guide -- 5.9.2. Physical interpretation and theory of modes -- 5.9.2.1. Modal basis -- 5.9.2.2. Guide with a circular section -- 5.9.2.3. Elements of the modal theory of wave guides. , 5.9.3. Green's function -- 5.9.4. Section change -- 5.9.4.1. Discontinuous variation -- 5.9.4.2. Continuous variation: pavilions -- 5.9.5. Propagation in a conduit in the presence of flow -- Chapter 6: Wave Propagation in Elastic Media -- 6.1. Equation of mechanical wave propagation -- 6.2. Free waves -- 6.2.1. Volumic waves -- 6.2.2. Plane wave case -- 6.2.3. Surface waves -- 6.2.3.1. Rayleigh waves -- 6.2.3.2. Scholte-Stoneley waves -- 6.2.3.3. Love waves -- 6.3. Green's kernels in a harmonic regime -- 6.4. Thin body approximation for plannar structures -- 6.4.1. Straight beams -- 6.4.1.1. Displacement field -- 6.4.1.2. Beam operator -- 6.4.1.2.1. Longitudinal vibrations (compression) -- 6.4.1.2.2. Weak formulation of the problem -- 6.4.1.2.3. Transverse vibrations (bending) -- 6.4.1.2.4. Weak formulation of the problem -- 6.4.2. Plane plates -- 6.4.2.1. Displacement field -- 6.4.2.2. Plate operator -- 6.4.2.3. Harmonic regime -- 6.5. Thin body approximation for cylindrical structures -- 6.5.1. Cylinder -- 6.5.1.1. Displacement field -- 6.5.1.2. Thin shell operators -- 6.5.1.3. Elastic potential energy -- 6.5.1.4. Kinetic energy -- 6.5.1.5. Variational equations: operators -- 6.5.1.6. Boundary conditions -- 6.5.1.7. Harmonic regime -- 6.5.1.8. Angular Fourier series -- 6.5.2. Ring -- 6.5.2.1. Displacement field -- 6.5.2.2. Ring operator -- 6.5.2.3. Harmonic regime: solution in angular harmonics -- Chapter 7: Vibrations of Thin Structures -- 7.1. Beam vibrations -- 7.1.1. Beam compression vibrations -- 7.1.1.1. Clamped beam and several solution methods -- 7.1.1.2. Expansion based on eigenmodes -- 7.1.1.3. Solution using Green's representation -- 7.1.1.4. General integration method -- 7.1.1.5. Beam excited at one end -- 7.1.2. Beam bending vibrations -- 7.1.2.1. General solution -- 7.1.2.2. Green's kernels -- 7.1.2.3. Beams of finite length. , 7.1.2.4. Supported beam -- 7.1.2.5. Clamped beam -- 7.1.2.6. Other boundary conditions -- 7.1.2.7. Two cantilever beams coupled with a spring -- 7.1.2.8. Identification of mechanical properties -- 7.2. Plate vibrations -- 7.2.1. Infinite plate -- 7.2.1.1. General solution -- 7.2.1.2. Polar coordinates -- 7.2.1.3. Cartesian coordinates -- 7.2.1.4. Dispersion relation -- 7.2.1.5. Green's kernel -- 7.2.1.6. Thick plate -- 7.2.2. Finite plate -- 7.2.2.1. Rectangular plate with simply supported edges -- 7.2.2.2. Modal basis -- 7.2.2.3. Green's kernel -- 7.2.2.4. Clamped or free rectangular plate -- 7.2.2.5. Clamped plate -- 7.2.2.6. Free plate -- 7.2.2.7. Identification of experimental resonance frequencies -- 7.2.2.8. Clamped circular plate -- 7.2.2.9. Forced regime -- 7.2.2.10. Free circular plate -- 7.2.2.11. Supported circular plate -- 7.2.3. Plate of arbitrary shape -- 7.2.3.1. Green's formula -- 7.2.3.2. Green's representation of the displacement of the plate -- 7.2.3.3. Boundary integral equations -- 7.3. Cylindrical shell vibrations -- 7.3.1. Infinite shell -- 7.3.1.1. General solution -- 7.3.1.2. Green's kernel -- 7.3.2. Finite shell -- 7.3.2.1. Special case of the supported shell -- 7.3.2.2. Other boundary conditions -- 7.3.2.3. Green's formula -- 7.3.2.4. Response of a shell excited by a turbulent boundary layer -- Chapter 8: Acoustic Radiation of Thin Plates -- 8.1. First notions of vibroacoustics: a simple example -- 8.1.1. Motion equations -- 8.1.2. Acoustic radiation -- 8.1.3. "Light fluid" approximation -- 8.1.4. Sound transmission -- 8.1.5. Transient regime -- 8.2. Free waves in an infinite plate immersed in a fluid -- 8.2.1. Roots of the dispersion equation -- 8.2.2. Light fluid approximation -- 8.2.2.1. Subsonic regime -- 8.2.2.2. Supersonic regime -- 8.3. Transmission of a plane wave by a thin plate.
    Weitere Ausg.: Erscheint auch als: Druck-Ausgabe Anselmet, Fabien. Acoustics, aeroacoustics and vibrations
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    London, England ; : ISTE :
    UID:
    almahu_9948326166202882
    Umfang: 1 online resource (529 pages) : , illustrations.
    ISBN: 9781119178392 (e-book)
    Serie: Waves Series
    Weitere Ausg.: Print version: Anselmet, Fabien. Acoustics, aeroacoustics and vibrations. London, England ; Hoboken, New Jersey : ISTE : Wiley, c2016 ISBN 9781119178361
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 1119172098?
Meinten Sie 1119138388?
Meinten Sie 1119138396?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz