Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Munich, Germany :Hanser Publishers ;
    UID:
    almahu_9948620999402882
    Format: 1 online resource (430 pages)
    Edition: First edition.
    ISBN: 1-56990-748-X , 1-5231-2684-1
    Content: Well-founded knowledge of machines, processes, and material behavior is required in order to design and operate twin-screw extruders for economically successful operations. This book provides valuable information on applications from a practical perspective, suitable for both beginners and experienced professional engineers.
    Note: Intro -- Preface -- The Authors -- Contents -- 1 Introduction -- 1.1 Technical and Economic Importance of Extruders -- 1.1.1 Extruder Types and Terms -- 1.1.2 Screw Machines and Plastics -- 1.1.3 Economic Core Function of an Extruder in the Plastics Industry -- 1.1.4 Extruder Types and Advantages of Closely Intermeshing Co-Rotating Screws -- 1.1.5 First Closely Intermeshing Co-Rotating Screws -- 1.1.6 Details of Twin-Screws -- 1.1.7 Objective of the Book -- 1.1.8 Summary -- 1.1.9 Prospects -- 1.2 Historical Development of Co-Rotating Twin-Screw Extruders -- 1.2.1 Preface and Recognition of Bayer Scientists -- 1.2.2 Historical Development of Co-Rotating Twin-Screw Extruders -- 1.2.2.1 Early Developments -- 1.2.2.2 Pioneering Period -- 1.2.2.3 New High-Viscosity Technology with Co-Rotating Extruders -- 1.2.2.4 Special Developments from Bayer-Hochviskostechnik (High Viscosity Technology Group) -- 1.2.2.5 Developments after Licensing -- 1.2.2.6 Developments after Expiration of the Primary Patents -- 1.3 General Overview of the Compounding Process: Tasks, Selected Applications, and Process Zones -- 1.3.1 Compounding Tasks and Requirements -- 1.3.2 Tasks and Design of the Processing Zones of a Compounding Extruder -- 1.3.2.1 Intake Zone -- 1.3.2.2 Plastification Zone -- 1.3.2.3 Melt Conveying Zone -- 1.3.2.4 Distributive Mixing Zone -- 1.3.2.5 Dispersive Mixing Zone -- 1.3.2.6 Devolatilization Zone -- 1.3.2.7 Pressure Build-Up Zone -- 1.3.3 Characteristic Process Parameters -- 1.3.3.1 Specific Energy Input -- 1.3.3.2 Residence Time Characteristics -- 1.3.4 Process Examples -- 1.3.4.1 Incorporation of Glass Fibers -- 1.3.4.2 Incorporation of Fillers -- 1.3.4.3 Production of Masterbatches -- 1.3.4.4 Coloring -- 1.4 Process Understanding - Overview and Evaluation of Experiments and Models -- 1.4.1 Introduction. , 1.4.2 Classification of Models and Experiments -- 1.4.3 Solid Materials -- 1.4.4 Highly Viscous Liquids -- 1.4.4.1 One-Dimensional Models -- 1.4.4.2 Three-Dimensional Models -- 1.4.5 Summary -- 1.4.6 Prospects and Proposals -- 1.4.6.1 Program for Extruder Configuration -- 1.4.6.2 Further Development of Models -- 1.4.6.3 New Model Applications - Online -- 1.4.6.4 Process Characterization of Screw Elements by Key Figures -- 1.5 Conveying and Power Parameters of Standard Conveying Elements -- 1.6 Frequently Used Symbols -- 2 Basics - Screw Elements -- 2.1 Geometry of Co-Rotating Extruders: Conveying and Kneading Elements, Including Clearance Strategies -- 2.1.1 Introduction -- 2.1.2 The Fully Wiped Profile from Arcs -- 2.1.3 Geometric Design of Fully Wiped Profiles -- 2.1.4 Dimensions of Screw Elements with Clearances -- 2.1.5 Transition between Different Numbers of Threads -- 2.1.6 Calculation of a Screw Profile for Production According to Planar Offset -- 2.1.7 Free Cross-Sectional Area -- 2.1.8 Surface of Barrel and Conveying Elements -- 2.1.9 Kneading Elements -- 2.1.10 New Developments with Screw Geometries -- 2.2 Screw Elements and Their Use -- 2.2.1 Construction of Screw Elements -- 2.2.2 Combining Screw Elements -- 2.2.3 Screw Elements and Their Operating Principles -- 2.2.3.1 Conveying Elements -- 2.2.3.2 Kneading Elements -- 2.2.3.3 Sealing Elements -- 2.2.3.4 Mixing Elements -- 2.2.3.5 Special Elements -- 2.3 Overview of Patented Screw Elements -- 2.3.1 WO 2009152910, EP 2291277, US 20110110183 -- 2.3.2 WO 2011039016, EP 2483051, US 20120320702 -- 2.3.3 WO 2011069896, EP 2509765, US 20120281001 -- 2.3.4 DE 00813154, US 2670188 -- 2.3.5 DE 19947967, EP 1121238, WO 2000020188 -- 2.3.6 US 1868671 -- 2.3.7 DE 10207145, EP 1476290, US 20050152214 -- 2.3.8 DE 00940109, US 2814472 -- 2.3.9 US 5713209 -- 2.3.10 US 3717330, DE 2128468. , 2.3.11 DE 4118530, EP 516936, US 5338112 -- 2.3.12 US 4131371 -- 2.3.13 DE 03412258, US 4824256 -- 2.3.14 DE 1180718, US 3254367 -- 2.3.15 US 3900187 -- 2.3.16 WO 2009153003, EP 2303544, US 20110112255 -- 2.3.17 WO 2009152974, EP 2291279, US 20110180949 -- 2.3.18 US 3216706 -- 2.3.19 WO 2009152968, EP 2303531, US 20110158039 -- 2.3.20 WO 2013045623, EP 2760658 -- 2.3.21 WO 2009152973, EP 2291270, US 20110141843 -- 2.3.22 WO 2009153002, EP 2307182, US 20110096617 -- 2.3.23 EP 0002131, JP 54072265, US 4300839 -- 2.3.24 DE 19718292, EP 0875356, US 6048088 -- 2.3.25 DE 04239220 -- 2.3.26 DE 01529919, US 3288077 -- 2.3.27 EP 0330308, US 5048971 -- 2.3.28 DE 10114727, US 6974243, WO 2002076707 -- 2.3.29 US 6783270, WO 2002009919 -- 2.3.30 WO 2013128463, EP 2747980, US 20140036614 -- 2.3.31 JP 2008183721, DE 102007055764, US 2008181051 -- 2.3.32 DE 4329612, EP 641640, US 5573332 -- 2.3.33 DE 19860256, EP 1013402, US 6179460 -- 2.3.34 DE 04134026, EP 0537450, US 5318358 -- 2.3.35 DE 19706134 -- 2.3.36 JP 2013028055 -- 2.3.37 WO 1998013189, US 6022133, EP 934151 -- 2.3.38 WO 1999025537, EP 1032492 -- 2.3.39 US 6116770, EP 1035960, WO 2000020189 -- 2.3.40 DE 29901899 U1 -- 2.3.41 US 6170975, WO 2000047393 -- 2.3.42 DE 10150006, EP 1434679, US 7080935 -- 2.3.43 DE 4202821, US 5267788, WO 1993014921 -- 2.3.44 DE 03014643, EP 0037984, US 4352568 -- 2.3.45 DE 02611908, US 4162854 -- 2.3.46 WO 1995033608, US 5487602, EP 764074 -- 2.3.47 DE 102004010553 -- 2.3.48 DE 04115591, EP 0513431 -- 2.3.49 WO 2011073181, EP 2512776, US 20120245909 -- 3 Material Properties of Polymers -- 3.1 Rheological Properties of Polymer Melts -- 3.1.1 Introduction and Motivation -- 3.1.2 Classification of Rheological Behavior of Solids and Fluids -- 3.1.3 Comparison of Viscous Fluid and Viscoelastic Fluid -- 3.1.3.1 Viscous Fluids -- 3.1.3.2 Viscoelastic Fluids. , 3.1.4 Temperature Dependence of Shear Viscosity -- 3.1.4.1 Temperature Dependence for Semi-Crystalline Polymers -- 3.1.4.2 Temperature Dependence for Amorphous Polymers -- 3.1.5 Influence of Molecular Parameters on Rheological Properties of Polymer Melts -- 3.1.6 Shear Flows -- 3.1.6.1 Flow Profiles of Pressure-Driven Pipe Flow -- 3.1.6.2 Flow Profiles of Simple Drag Flow -- 3.1.7 Extensional Flows -- 3.2 Material Behavior of Blends - Consideration of Polymer-Filler and Polymer-Polymer Systems -- 3.2.1 Material Properties of Two-Substance Systems -- 3.2.1.1 Introduction to Mixed Systems -- 3.2.1.2 Thermodynamic Material Data of Two-Substance Mixtures -- 3.2.1.3 Viscosities of Two-Substance Mixtures -- 3.2.1.4 Compatible Polymer Blends -- 3.2.1.5 Immiscible (Incompatible) Polymer Blends -- 3.2.2 Process Behavior during Plasticizing of Two-Substance Polymer Systems -- 3.2.2.1 Calculation of the Melting Behavior of Two-Substance Systems -- 3.2.3 Final Remarks for Use in Practice -- 3.2.4 Conclusion -- 3.3 Diffusive Mass Transport in Polymers -- 3.3.1 Mechanisms of Mass Transport -- 3.3.1.1 Concentration Distribution Near the Phase Interface -- 3.3.2 Influencing Quantities of the Material Properties -- 3.4 Influence Factors and Reduction of Degradation during Polymer Processing -- 3.4.1 Introduction -- 3.4.2 Chemical Reactions -- 3.4.2.1 Damage through Thermal Degradation -- 3.4.2.2 Oxidative Degradation -- 3.4.2.3 Chemical Degradation Reactions via Residual Water -- 3.4.2.4 Degradation via Mechanical Stress -- 3.4.2.5 Influence of Metals on Degradation -- 3.4.3 Relationship between Polymer Degradation and Properties -- 3.4.4 Reduction of Polymer Degradation during Processing -- 3.4.4.1 Extruder Screw Design or Processing Parameters -- 3.4.4.2 Changes of Melt Flow Behavior via Molecular Weight and Flow Modifiers. , 3.4.4.3 Minimization of Reaction Partners -- 3.4.4.4 Additives for Reduction of Polymer Degradation -- 3.4.5 Summary -- 3.5 Calculation Basis for the Flow in Wedge Shaped Shear Gaps and Flow Properties of Filled Polymer Melts -- 3.5.1 Consideration of Pseudoplastic Flow Behavior of Plastic Melts in the Wedge Gap Flow and Key Numbers for the Evaluation of the Dispersion -- 3.5.1.1 Introduction - Deformation of Plastic Melts, Shear, and Elongation in the Wedge Gap Flow -- 3.5.1.2 Calculation of the Wedge Gap Flow for Highly Viscous Fluids -- 3.5.1.3 Plastic Melts with Different Pseudoplastic Flow Behavior -- 3.5.1.4 Results of the Simulation -- 3.5.2 Modeling of the Flow Behavior of Highly Filled Plastics -- 3.5.2.1 Viscosity of Polymers with Different Filler Contents -- 3.5.2.2 CARPOW Approach for the Viscosity Function of Highly Filled Polymers -- 3.5.2.3 Summary -- 4 Conveying Behavior, Pressure and Performance Behavior -- 4.1 Introduction of Conveying and Pressure Behavior of Highly Viscous Liquids in Extruders -- 4.1.1 Throughput and Pressure Behavior, Dimensionless Key Figures -- 4.1.1.1 Shear Rate and Viscosity -- 4.1.1.2 Simple Qualitative Consideration on Simple Plane Flow -- 4.1.1.3 Extruder Key Figures and Pressure Basic Equation for Extruders -- 4.2 Introduction of the Performance Behavior of Highly Viscous Liquids in Extruders -- 4.2.1 Throughput Performance Behavior of the Plane Flow between Two Plates -- 4.2.2 Performance Key Figure for an Annular Gap -- 4.2.3 Basic Equation of the Performance Characteristic of Extruders -- 4.3 Dissipation, Pump Efficiency Degree, Temperature Increase, and Heat Transfer -- 4.3.1 Dissipation -- 4.3.2 Pump Efficiency Degree -- 4.3.3 Temperature Increase -- 4.3.4 Heat Transfer -- 4.4 Prospect to the Sections 4.1, 4.2, and 4.3 -- 4.5 Pressure Generation and Energy Input in the Melt. , 4.5.1 Operating Conditions of Conveying Screw Elements.
    Additional Edition: ISBN 1-56990-747-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Munich, Germany :Hanser Publishers ;
    UID:
    edocfu_9960074233702883
    Format: 1 online resource (430 pages)
    Edition: First edition.
    ISBN: 1-56990-748-X , 1-5231-2684-1
    Content: Well-founded knowledge of machines, processes, and material behavior is required in order to design and operate twin-screw extruders for economically successful operations. This book provides valuable information on applications from a practical perspective, suitable for both beginners and experienced professional engineers.
    Note: Intro -- Preface -- The Authors -- Contents -- 1 Introduction -- 1.1 Technical and Economic Importance of Extruders -- 1.1.1 Extruder Types and Terms -- 1.1.2 Screw Machines and Plastics -- 1.1.3 Economic Core Function of an Extruder in the Plastics Industry -- 1.1.4 Extruder Types and Advantages of Closely Intermeshing Co-Rotating Screws -- 1.1.5 First Closely Intermeshing Co-Rotating Screws -- 1.1.6 Details of Twin-Screws -- 1.1.7 Objective of the Book -- 1.1.8 Summary -- 1.1.9 Prospects -- 1.2 Historical Development of Co-Rotating Twin-Screw Extruders -- 1.2.1 Preface and Recognition of Bayer Scientists -- 1.2.2 Historical Development of Co-Rotating Twin-Screw Extruders -- 1.2.2.1 Early Developments -- 1.2.2.2 Pioneering Period -- 1.2.2.3 New High-Viscosity Technology with Co-Rotating Extruders -- 1.2.2.4 Special Developments from Bayer-Hochviskostechnik (High Viscosity Technology Group) -- 1.2.2.5 Developments after Licensing -- 1.2.2.6 Developments after Expiration of the Primary Patents -- 1.3 General Overview of the Compounding Process: Tasks, Selected Applications, and Process Zones -- 1.3.1 Compounding Tasks and Requirements -- 1.3.2 Tasks and Design of the Processing Zones of a Compounding Extruder -- 1.3.2.1 Intake Zone -- 1.3.2.2 Plastification Zone -- 1.3.2.3 Melt Conveying Zone -- 1.3.2.4 Distributive Mixing Zone -- 1.3.2.5 Dispersive Mixing Zone -- 1.3.2.6 Devolatilization Zone -- 1.3.2.7 Pressure Build-Up Zone -- 1.3.3 Characteristic Process Parameters -- 1.3.3.1 Specific Energy Input -- 1.3.3.2 Residence Time Characteristics -- 1.3.4 Process Examples -- 1.3.4.1 Incorporation of Glass Fibers -- 1.3.4.2 Incorporation of Fillers -- 1.3.4.3 Production of Masterbatches -- 1.3.4.4 Coloring -- 1.4 Process Understanding - Overview and Evaluation of Experiments and Models -- 1.4.1 Introduction. , 1.4.2 Classification of Models and Experiments -- 1.4.3 Solid Materials -- 1.4.4 Highly Viscous Liquids -- 1.4.4.1 One-Dimensional Models -- 1.4.4.2 Three-Dimensional Models -- 1.4.5 Summary -- 1.4.6 Prospects and Proposals -- 1.4.6.1 Program for Extruder Configuration -- 1.4.6.2 Further Development of Models -- 1.4.6.3 New Model Applications - Online -- 1.4.6.4 Process Characterization of Screw Elements by Key Figures -- 1.5 Conveying and Power Parameters of Standard Conveying Elements -- 1.6 Frequently Used Symbols -- 2 Basics - Screw Elements -- 2.1 Geometry of Co-Rotating Extruders: Conveying and Kneading Elements, Including Clearance Strategies -- 2.1.1 Introduction -- 2.1.2 The Fully Wiped Profile from Arcs -- 2.1.3 Geometric Design of Fully Wiped Profiles -- 2.1.4 Dimensions of Screw Elements with Clearances -- 2.1.5 Transition between Different Numbers of Threads -- 2.1.6 Calculation of a Screw Profile for Production According to Planar Offset -- 2.1.7 Free Cross-Sectional Area -- 2.1.8 Surface of Barrel and Conveying Elements -- 2.1.9 Kneading Elements -- 2.1.10 New Developments with Screw Geometries -- 2.2 Screw Elements and Their Use -- 2.2.1 Construction of Screw Elements -- 2.2.2 Combining Screw Elements -- 2.2.3 Screw Elements and Their Operating Principles -- 2.2.3.1 Conveying Elements -- 2.2.3.2 Kneading Elements -- 2.2.3.3 Sealing Elements -- 2.2.3.4 Mixing Elements -- 2.2.3.5 Special Elements -- 2.3 Overview of Patented Screw Elements -- 2.3.1 WO 2009152910, EP 2291277, US 20110110183 -- 2.3.2 WO 2011039016, EP 2483051, US 20120320702 -- 2.3.3 WO 2011069896, EP 2509765, US 20120281001 -- 2.3.4 DE 00813154, US 2670188 -- 2.3.5 DE 19947967, EP 1121238, WO 2000020188 -- 2.3.6 US 1868671 -- 2.3.7 DE 10207145, EP 1476290, US 20050152214 -- 2.3.8 DE 00940109, US 2814472 -- 2.3.9 US 5713209 -- 2.3.10 US 3717330, DE 2128468. , 2.3.11 DE 4118530, EP 516936, US 5338112 -- 2.3.12 US 4131371 -- 2.3.13 DE 03412258, US 4824256 -- 2.3.14 DE 1180718, US 3254367 -- 2.3.15 US 3900187 -- 2.3.16 WO 2009153003, EP 2303544, US 20110112255 -- 2.3.17 WO 2009152974, EP 2291279, US 20110180949 -- 2.3.18 US 3216706 -- 2.3.19 WO 2009152968, EP 2303531, US 20110158039 -- 2.3.20 WO 2013045623, EP 2760658 -- 2.3.21 WO 2009152973, EP 2291270, US 20110141843 -- 2.3.22 WO 2009153002, EP 2307182, US 20110096617 -- 2.3.23 EP 0002131, JP 54072265, US 4300839 -- 2.3.24 DE 19718292, EP 0875356, US 6048088 -- 2.3.25 DE 04239220 -- 2.3.26 DE 01529919, US 3288077 -- 2.3.27 EP 0330308, US 5048971 -- 2.3.28 DE 10114727, US 6974243, WO 2002076707 -- 2.3.29 US 6783270, WO 2002009919 -- 2.3.30 WO 2013128463, EP 2747980, US 20140036614 -- 2.3.31 JP 2008183721, DE 102007055764, US 2008181051 -- 2.3.32 DE 4329612, EP 641640, US 5573332 -- 2.3.33 DE 19860256, EP 1013402, US 6179460 -- 2.3.34 DE 04134026, EP 0537450, US 5318358 -- 2.3.35 DE 19706134 -- 2.3.36 JP 2013028055 -- 2.3.37 WO 1998013189, US 6022133, EP 934151 -- 2.3.38 WO 1999025537, EP 1032492 -- 2.3.39 US 6116770, EP 1035960, WO 2000020189 -- 2.3.40 DE 29901899 U1 -- 2.3.41 US 6170975, WO 2000047393 -- 2.3.42 DE 10150006, EP 1434679, US 7080935 -- 2.3.43 DE 4202821, US 5267788, WO 1993014921 -- 2.3.44 DE 03014643, EP 0037984, US 4352568 -- 2.3.45 DE 02611908, US 4162854 -- 2.3.46 WO 1995033608, US 5487602, EP 764074 -- 2.3.47 DE 102004010553 -- 2.3.48 DE 04115591, EP 0513431 -- 2.3.49 WO 2011073181, EP 2512776, US 20120245909 -- 3 Material Properties of Polymers -- 3.1 Rheological Properties of Polymer Melts -- 3.1.1 Introduction and Motivation -- 3.1.2 Classification of Rheological Behavior of Solids and Fluids -- 3.1.3 Comparison of Viscous Fluid and Viscoelastic Fluid -- 3.1.3.1 Viscous Fluids -- 3.1.3.2 Viscoelastic Fluids. , 3.1.4 Temperature Dependence of Shear Viscosity -- 3.1.4.1 Temperature Dependence for Semi-Crystalline Polymers -- 3.1.4.2 Temperature Dependence for Amorphous Polymers -- 3.1.5 Influence of Molecular Parameters on Rheological Properties of Polymer Melts -- 3.1.6 Shear Flows -- 3.1.6.1 Flow Profiles of Pressure-Driven Pipe Flow -- 3.1.6.2 Flow Profiles of Simple Drag Flow -- 3.1.7 Extensional Flows -- 3.2 Material Behavior of Blends - Consideration of Polymer-Filler and Polymer-Polymer Systems -- 3.2.1 Material Properties of Two-Substance Systems -- 3.2.1.1 Introduction to Mixed Systems -- 3.2.1.2 Thermodynamic Material Data of Two-Substance Mixtures -- 3.2.1.3 Viscosities of Two-Substance Mixtures -- 3.2.1.4 Compatible Polymer Blends -- 3.2.1.5 Immiscible (Incompatible) Polymer Blends -- 3.2.2 Process Behavior during Plasticizing of Two-Substance Polymer Systems -- 3.2.2.1 Calculation of the Melting Behavior of Two-Substance Systems -- 3.2.3 Final Remarks for Use in Practice -- 3.2.4 Conclusion -- 3.3 Diffusive Mass Transport in Polymers -- 3.3.1 Mechanisms of Mass Transport -- 3.3.1.1 Concentration Distribution Near the Phase Interface -- 3.3.2 Influencing Quantities of the Material Properties -- 3.4 Influence Factors and Reduction of Degradation during Polymer Processing -- 3.4.1 Introduction -- 3.4.2 Chemical Reactions -- 3.4.2.1 Damage through Thermal Degradation -- 3.4.2.2 Oxidative Degradation -- 3.4.2.3 Chemical Degradation Reactions via Residual Water -- 3.4.2.4 Degradation via Mechanical Stress -- 3.4.2.5 Influence of Metals on Degradation -- 3.4.3 Relationship between Polymer Degradation and Properties -- 3.4.4 Reduction of Polymer Degradation during Processing -- 3.4.4.1 Extruder Screw Design or Processing Parameters -- 3.4.4.2 Changes of Melt Flow Behavior via Molecular Weight and Flow Modifiers. , 3.4.4.3 Minimization of Reaction Partners -- 3.4.4.4 Additives for Reduction of Polymer Degradation -- 3.4.5 Summary -- 3.5 Calculation Basis for the Flow in Wedge Shaped Shear Gaps and Flow Properties of Filled Polymer Melts -- 3.5.1 Consideration of Pseudoplastic Flow Behavior of Plastic Melts in the Wedge Gap Flow and Key Numbers for the Evaluation of the Dispersion -- 3.5.1.1 Introduction - Deformation of Plastic Melts, Shear, and Elongation in the Wedge Gap Flow -- 3.5.1.2 Calculation of the Wedge Gap Flow for Highly Viscous Fluids -- 3.5.1.3 Plastic Melts with Different Pseudoplastic Flow Behavior -- 3.5.1.4 Results of the Simulation -- 3.5.2 Modeling of the Flow Behavior of Highly Filled Plastics -- 3.5.2.1 Viscosity of Polymers with Different Filler Contents -- 3.5.2.2 CARPOW Approach for the Viscosity Function of Highly Filled Polymers -- 3.5.2.3 Summary -- 4 Conveying Behavior, Pressure and Performance Behavior -- 4.1 Introduction of Conveying and Pressure Behavior of Highly Viscous Liquids in Extruders -- 4.1.1 Throughput and Pressure Behavior, Dimensionless Key Figures -- 4.1.1.1 Shear Rate and Viscosity -- 4.1.1.2 Simple Qualitative Consideration on Simple Plane Flow -- 4.1.1.3 Extruder Key Figures and Pressure Basic Equation for Extruders -- 4.2 Introduction of the Performance Behavior of Highly Viscous Liquids in Extruders -- 4.2.1 Throughput Performance Behavior of the Plane Flow between Two Plates -- 4.2.2 Performance Key Figure for an Annular Gap -- 4.2.3 Basic Equation of the Performance Characteristic of Extruders -- 4.3 Dissipation, Pump Efficiency Degree, Temperature Increase, and Heat Transfer -- 4.3.1 Dissipation -- 4.3.2 Pump Efficiency Degree -- 4.3.3 Temperature Increase -- 4.3.4 Heat Transfer -- 4.4 Prospect to the Sections 4.1, 4.2, and 4.3 -- 4.5 Pressure Generation and Energy Input in the Melt. , 4.5.1 Operating Conditions of Conveying Screw Elements.
    Additional Edition: ISBN 1-56990-747-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Munich, Germany :Hanser Publishers ;
    UID:
    edoccha_9960074233702883
    Format: 1 online resource (430 pages)
    Edition: First edition.
    ISBN: 1-56990-748-X , 1-5231-2684-1
    Content: Well-founded knowledge of machines, processes, and material behavior is required in order to design and operate twin-screw extruders for economically successful operations. This book provides valuable information on applications from a practical perspective, suitable for both beginners and experienced professional engineers.
    Note: Intro -- Preface -- The Authors -- Contents -- 1 Introduction -- 1.1 Technical and Economic Importance of Extruders -- 1.1.1 Extruder Types and Terms -- 1.1.2 Screw Machines and Plastics -- 1.1.3 Economic Core Function of an Extruder in the Plastics Industry -- 1.1.4 Extruder Types and Advantages of Closely Intermeshing Co-Rotating Screws -- 1.1.5 First Closely Intermeshing Co-Rotating Screws -- 1.1.6 Details of Twin-Screws -- 1.1.7 Objective of the Book -- 1.1.8 Summary -- 1.1.9 Prospects -- 1.2 Historical Development of Co-Rotating Twin-Screw Extruders -- 1.2.1 Preface and Recognition of Bayer Scientists -- 1.2.2 Historical Development of Co-Rotating Twin-Screw Extruders -- 1.2.2.1 Early Developments -- 1.2.2.2 Pioneering Period -- 1.2.2.3 New High-Viscosity Technology with Co-Rotating Extruders -- 1.2.2.4 Special Developments from Bayer-Hochviskostechnik (High Viscosity Technology Group) -- 1.2.2.5 Developments after Licensing -- 1.2.2.6 Developments after Expiration of the Primary Patents -- 1.3 General Overview of the Compounding Process: Tasks, Selected Applications, and Process Zones -- 1.3.1 Compounding Tasks and Requirements -- 1.3.2 Tasks and Design of the Processing Zones of a Compounding Extruder -- 1.3.2.1 Intake Zone -- 1.3.2.2 Plastification Zone -- 1.3.2.3 Melt Conveying Zone -- 1.3.2.4 Distributive Mixing Zone -- 1.3.2.5 Dispersive Mixing Zone -- 1.3.2.6 Devolatilization Zone -- 1.3.2.7 Pressure Build-Up Zone -- 1.3.3 Characteristic Process Parameters -- 1.3.3.1 Specific Energy Input -- 1.3.3.2 Residence Time Characteristics -- 1.3.4 Process Examples -- 1.3.4.1 Incorporation of Glass Fibers -- 1.3.4.2 Incorporation of Fillers -- 1.3.4.3 Production of Masterbatches -- 1.3.4.4 Coloring -- 1.4 Process Understanding - Overview and Evaluation of Experiments and Models -- 1.4.1 Introduction. , 1.4.2 Classification of Models and Experiments -- 1.4.3 Solid Materials -- 1.4.4 Highly Viscous Liquids -- 1.4.4.1 One-Dimensional Models -- 1.4.4.2 Three-Dimensional Models -- 1.4.5 Summary -- 1.4.6 Prospects and Proposals -- 1.4.6.1 Program for Extruder Configuration -- 1.4.6.2 Further Development of Models -- 1.4.6.3 New Model Applications - Online -- 1.4.6.4 Process Characterization of Screw Elements by Key Figures -- 1.5 Conveying and Power Parameters of Standard Conveying Elements -- 1.6 Frequently Used Symbols -- 2 Basics - Screw Elements -- 2.1 Geometry of Co-Rotating Extruders: Conveying and Kneading Elements, Including Clearance Strategies -- 2.1.1 Introduction -- 2.1.2 The Fully Wiped Profile from Arcs -- 2.1.3 Geometric Design of Fully Wiped Profiles -- 2.1.4 Dimensions of Screw Elements with Clearances -- 2.1.5 Transition between Different Numbers of Threads -- 2.1.6 Calculation of a Screw Profile for Production According to Planar Offset -- 2.1.7 Free Cross-Sectional Area -- 2.1.8 Surface of Barrel and Conveying Elements -- 2.1.9 Kneading Elements -- 2.1.10 New Developments with Screw Geometries -- 2.2 Screw Elements and Their Use -- 2.2.1 Construction of Screw Elements -- 2.2.2 Combining Screw Elements -- 2.2.3 Screw Elements and Their Operating Principles -- 2.2.3.1 Conveying Elements -- 2.2.3.2 Kneading Elements -- 2.2.3.3 Sealing Elements -- 2.2.3.4 Mixing Elements -- 2.2.3.5 Special Elements -- 2.3 Overview of Patented Screw Elements -- 2.3.1 WO 2009152910, EP 2291277, US 20110110183 -- 2.3.2 WO 2011039016, EP 2483051, US 20120320702 -- 2.3.3 WO 2011069896, EP 2509765, US 20120281001 -- 2.3.4 DE 00813154, US 2670188 -- 2.3.5 DE 19947967, EP 1121238, WO 2000020188 -- 2.3.6 US 1868671 -- 2.3.7 DE 10207145, EP 1476290, US 20050152214 -- 2.3.8 DE 00940109, US 2814472 -- 2.3.9 US 5713209 -- 2.3.10 US 3717330, DE 2128468. , 2.3.11 DE 4118530, EP 516936, US 5338112 -- 2.3.12 US 4131371 -- 2.3.13 DE 03412258, US 4824256 -- 2.3.14 DE 1180718, US 3254367 -- 2.3.15 US 3900187 -- 2.3.16 WO 2009153003, EP 2303544, US 20110112255 -- 2.3.17 WO 2009152974, EP 2291279, US 20110180949 -- 2.3.18 US 3216706 -- 2.3.19 WO 2009152968, EP 2303531, US 20110158039 -- 2.3.20 WO 2013045623, EP 2760658 -- 2.3.21 WO 2009152973, EP 2291270, US 20110141843 -- 2.3.22 WO 2009153002, EP 2307182, US 20110096617 -- 2.3.23 EP 0002131, JP 54072265, US 4300839 -- 2.3.24 DE 19718292, EP 0875356, US 6048088 -- 2.3.25 DE 04239220 -- 2.3.26 DE 01529919, US 3288077 -- 2.3.27 EP 0330308, US 5048971 -- 2.3.28 DE 10114727, US 6974243, WO 2002076707 -- 2.3.29 US 6783270, WO 2002009919 -- 2.3.30 WO 2013128463, EP 2747980, US 20140036614 -- 2.3.31 JP 2008183721, DE 102007055764, US 2008181051 -- 2.3.32 DE 4329612, EP 641640, US 5573332 -- 2.3.33 DE 19860256, EP 1013402, US 6179460 -- 2.3.34 DE 04134026, EP 0537450, US 5318358 -- 2.3.35 DE 19706134 -- 2.3.36 JP 2013028055 -- 2.3.37 WO 1998013189, US 6022133, EP 934151 -- 2.3.38 WO 1999025537, EP 1032492 -- 2.3.39 US 6116770, EP 1035960, WO 2000020189 -- 2.3.40 DE 29901899 U1 -- 2.3.41 US 6170975, WO 2000047393 -- 2.3.42 DE 10150006, EP 1434679, US 7080935 -- 2.3.43 DE 4202821, US 5267788, WO 1993014921 -- 2.3.44 DE 03014643, EP 0037984, US 4352568 -- 2.3.45 DE 02611908, US 4162854 -- 2.3.46 WO 1995033608, US 5487602, EP 764074 -- 2.3.47 DE 102004010553 -- 2.3.48 DE 04115591, EP 0513431 -- 2.3.49 WO 2011073181, EP 2512776, US 20120245909 -- 3 Material Properties of Polymers -- 3.1 Rheological Properties of Polymer Melts -- 3.1.1 Introduction and Motivation -- 3.1.2 Classification of Rheological Behavior of Solids and Fluids -- 3.1.3 Comparison of Viscous Fluid and Viscoelastic Fluid -- 3.1.3.1 Viscous Fluids -- 3.1.3.2 Viscoelastic Fluids. , 3.1.4 Temperature Dependence of Shear Viscosity -- 3.1.4.1 Temperature Dependence for Semi-Crystalline Polymers -- 3.1.4.2 Temperature Dependence for Amorphous Polymers -- 3.1.5 Influence of Molecular Parameters on Rheological Properties of Polymer Melts -- 3.1.6 Shear Flows -- 3.1.6.1 Flow Profiles of Pressure-Driven Pipe Flow -- 3.1.6.2 Flow Profiles of Simple Drag Flow -- 3.1.7 Extensional Flows -- 3.2 Material Behavior of Blends - Consideration of Polymer-Filler and Polymer-Polymer Systems -- 3.2.1 Material Properties of Two-Substance Systems -- 3.2.1.1 Introduction to Mixed Systems -- 3.2.1.2 Thermodynamic Material Data of Two-Substance Mixtures -- 3.2.1.3 Viscosities of Two-Substance Mixtures -- 3.2.1.4 Compatible Polymer Blends -- 3.2.1.5 Immiscible (Incompatible) Polymer Blends -- 3.2.2 Process Behavior during Plasticizing of Two-Substance Polymer Systems -- 3.2.2.1 Calculation of the Melting Behavior of Two-Substance Systems -- 3.2.3 Final Remarks for Use in Practice -- 3.2.4 Conclusion -- 3.3 Diffusive Mass Transport in Polymers -- 3.3.1 Mechanisms of Mass Transport -- 3.3.1.1 Concentration Distribution Near the Phase Interface -- 3.3.2 Influencing Quantities of the Material Properties -- 3.4 Influence Factors and Reduction of Degradation during Polymer Processing -- 3.4.1 Introduction -- 3.4.2 Chemical Reactions -- 3.4.2.1 Damage through Thermal Degradation -- 3.4.2.2 Oxidative Degradation -- 3.4.2.3 Chemical Degradation Reactions via Residual Water -- 3.4.2.4 Degradation via Mechanical Stress -- 3.4.2.5 Influence of Metals on Degradation -- 3.4.3 Relationship between Polymer Degradation and Properties -- 3.4.4 Reduction of Polymer Degradation during Processing -- 3.4.4.1 Extruder Screw Design or Processing Parameters -- 3.4.4.2 Changes of Melt Flow Behavior via Molecular Weight and Flow Modifiers. , 3.4.4.3 Minimization of Reaction Partners -- 3.4.4.4 Additives for Reduction of Polymer Degradation -- 3.4.5 Summary -- 3.5 Calculation Basis for the Flow in Wedge Shaped Shear Gaps and Flow Properties of Filled Polymer Melts -- 3.5.1 Consideration of Pseudoplastic Flow Behavior of Plastic Melts in the Wedge Gap Flow and Key Numbers for the Evaluation of the Dispersion -- 3.5.1.1 Introduction - Deformation of Plastic Melts, Shear, and Elongation in the Wedge Gap Flow -- 3.5.1.2 Calculation of the Wedge Gap Flow for Highly Viscous Fluids -- 3.5.1.3 Plastic Melts with Different Pseudoplastic Flow Behavior -- 3.5.1.4 Results of the Simulation -- 3.5.2 Modeling of the Flow Behavior of Highly Filled Plastics -- 3.5.2.1 Viscosity of Polymers with Different Filler Contents -- 3.5.2.2 CARPOW Approach for the Viscosity Function of Highly Filled Polymers -- 3.5.2.3 Summary -- 4 Conveying Behavior, Pressure and Performance Behavior -- 4.1 Introduction of Conveying and Pressure Behavior of Highly Viscous Liquids in Extruders -- 4.1.1 Throughput and Pressure Behavior, Dimensionless Key Figures -- 4.1.1.1 Shear Rate and Viscosity -- 4.1.1.2 Simple Qualitative Consideration on Simple Plane Flow -- 4.1.1.3 Extruder Key Figures and Pressure Basic Equation for Extruders -- 4.2 Introduction of the Performance Behavior of Highly Viscous Liquids in Extruders -- 4.2.1 Throughput Performance Behavior of the Plane Flow between Two Plates -- 4.2.2 Performance Key Figure for an Annular Gap -- 4.2.3 Basic Equation of the Performance Characteristic of Extruders -- 4.3 Dissipation, Pump Efficiency Degree, Temperature Increase, and Heat Transfer -- 4.3.1 Dissipation -- 4.3.2 Pump Efficiency Degree -- 4.3.3 Temperature Increase -- 4.3.4 Heat Transfer -- 4.4 Prospect to the Sections 4.1, 4.2, and 4.3 -- 4.5 Pressure Generation and Energy Input in the Melt. , 4.5.1 Operating Conditions of Conveying Screw Elements.
    Additional Edition: ISBN 1-56990-747-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 2011.03181?
Did you mean 2051003181?
Did you mean 2010178181?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages