Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949983912502882
    Format: 1 online resource (xxi, 281 pages) : , illustrations.
    Edition: First edition.
    ISBN: 9780443299704 , 0443299706
    Series Statement: Emerging Technologies and Materials in Thermal Engineering Series
    Content: This book, authored by Ionut Purica, explores the integration of climate change concepts with circular economy principles, examining human society as a closed thermodynamic system. It addresses the interaction between society and nature, the necessity for a circular economy, and resource management through recycling technologies. The book delves into data analysis for climate change risk mitigation and offers insights into economic indicators, green investment schemes, and entropy within economic systems. It is intended for researchers, students, and professionals interested in sustainable development and energy systems, providing a comprehensive understanding of the interplay between environmental challenges and economic strategies.
    Note: Front Cover -- Climate Change and Circular Economics -- Climate Change and Circular Economics: Emerging Technologies and Materials in Thermal EngineeringHuman Society as a Closed Th ... -- Copyright -- Dedication -- Contents -- About the author -- Foreword -- Preface -- Acknowledgments and credits -- One - Human society and nature interaction -- 1.1 Society as a dissipative open system -- 1.2 Closing processes in self-organizing cycles -- 1.3 Evolution of human society toward a closed system -- 1.4 Model evolution 3 -- 1.5 Specific results -- 1.5.1 Use of capital -- 1.6 Is an inclusive society possible? -- References -- Further reading -- Two - Irreversible thermodynamics view of the need for a circular economy -- 2.1 Introduction -- 2.2 Irreversible thermodynamics approach -- 2.3 Circular economy -- 2.4 Estimating temperature increases and crises -- 2.5 Turning waste into assets-resource management policy and new technologies -- Appendix 2.1 -- References -- Three - Resource materials and recycling technologies -- 3.1 The main elements of the raw materials initiative -- 3.2 Improving recycling rates -- 3.3 Japan and rare earths in permanent magnets -- 3.4 Managing resources -- 3.4.1 Charting America's import reliance on key minerals -- 3.4.2 US import reliance by mineral -- 3.5 China's gallium and germanium restrictions -- 3.6 Rebirth of nuclear and the needed resources -- 3.7 Technological resources -- 3.7.1 Waste heat recovery system characteristics -- 3.7.1.1 Issues with implementing action -- 3.7.1.2 Climate change impact -- 3.7.1.3 Conditions for emissions mitigation -- 3.7.1.4 Resources -- 3.7.2 End-use energy efficiency and demand side management actions -- 3.7.3 Promoting residential demand-side management programs -- 3.7.3.1 Characteristics -- 3.7.3.2 Issues with implementing action -- 3.7.3.3 Climate change impact. , 3.7.3.4 Conditions for emissions mitigation -- 3.7.3.5 Examples -- 3.7.3.6 Resources -- 3.7.4 Promoting commercial demand-side management programs -- 3.7.4.1 Characteristics -- 3.7.4.2 Issues with implementing action -- 3.7.4.3 Climate change impact -- 3.7.4.4 Conditions for emissions mitigation -- 3.7.4.5 Resources -- 3.7.5 Promoting industrial demand-side management programs -- 3.7.5.1 Characteristics -- 3.7.5.2 Issues with implementing action -- 3.7.5.3 Climate change impact -- 3.7.5.4 Conditions for emissions mitigation -- 3.7.5.5 Resources -- 3.7.6 Renewable energy actions -- 3.7.7 Biomass -- 3.7.7.1 Characteristics -- 3.7.7.2 Issues with implementing action -- 3.7.7.3 Climate change impact -- 3.7.7.4 Conditions for emissions mitigation -- 3.7.8 Geothermal -- 3.7.8.1 Characteeristics -- 3.7.8.2 Issues with implementing action -- 3.7.8.3 Climate change impact -- 3.7.9 Small-scale hydropower -- 3.7.9.1 Characteristics -- 3.7.9.2 Issues with implementing action -- 3.7.9.3 Climate change impact -- 3.7.9.3.1 Emission effect -- Conditions for emissions mitigation -- 3.7.10 Photovoltaics -- 3.7.10.1 Characteristics -- 3.7.10.2 Issues with implementing action -- 3.7.10.3 Climate change impact -- 3.7.10.3.1 Conditions for emissions mitigation -- 3.7.11 Solar thermal -- 3.7.11.1 Characteristics -- 3.7.11.2 Issues with implementing action -- 3.7.11.3 Climate change impact -- 3.7.11.4 Conditions for emissions mitigation -- 3.7.12 Waste-derived fuels -- 3.7.12.1 Characteristics -- 3.7.12.2 Issues with implementing action -- 3.7.13 Wind power -- 3.7.13.1 Characteristics -- 3.7.13.2 Issues with implementing action -- 3.7.13.3 Climate change impact -- 3.7.13.4 Conditions for emissions mitigation -- 3.7.14 Recycling of coal-combustion by-products -- 3.7.14.1 Characteristics -- 3.7.14.2 Climate change impact -- 3.7.14.3 Conditions for emissions mitigation. , 3.7.14.4 Issues with implementing action -- 3.7.15 Utilizing clean coal technology-fluidized bed combustion -- 3.7.15.1 Characteristics -- 3.7.15.2 Climate change impact -- 3.7.15.3 Conditions for emissions mitigation -- 3.7.15.4 Issues with implementing action -- 3.7.16 Utilizing clean coal technology-integrated coal gasification combined cycle systems -- 3.7.16.1 Characteristics -- 3.7.16.2 Climate change impact -- 3.7.16.3 Conditions for emissions mitigation -- 3.7.16.4 Issues with implementing action -- 3.8 Nuclear reactors -- 3.9 Energy storage technologies -- 3.10 Direct conversion of energy -- 3.10.1 Introduction -- 3.10.2 Direct versus dynamic energy conversion -- 3.10.2.1 Dominance of dynamic conversion -- 3.10.2.2 Why is direct conversion desirable? -- 3.10.2.3 Laws governing energy conversion -- 3.10.2.4 Thermoelectricity -- 3.10.2.4.1 Electrons and holes -- 3.10.2.4.2 Practical thermoelectric power generators -- 3.10.2.5 Thermionic conversion -- 3.10.2.5.1 "Boiling" electrons out of metals -- 3.10.2.5.2 Reducing the space charge -- 3.10.2.5.3 Thermionic power in outer space -- 3.10.2.6 Magnetohydrodynamic conversion -- 3.10.2.6.1 Big word, simple concept -- 3.10.2.6.2 The fourth state of matter -- 3.10.2.6.3 Magnetohydrodynamic power prospects -- 3.10.2.7 Chemical batteries -- 3.10.2.7.1 Electricity from the chemical bond -- 3.10.2.7.2 Chemical reactions used in batteries and fuel cells -- 3.10.2.7.3 An old standby in outer space -- 3.10.2.8 The fuel cell -- 3.10.2.8.1 A continuously fueled battery -- Potential fuels -- Scheme for Project Apollo -- 3.10.2.9 Solar cells -- 3.10.2.9.1 Photons as energy carriers -- 3.10.2.9.2 Harnessing the sun's energy -- 3.10.2.10 Nuclear batteries -- 3.10.2.10.1 Energy from nuclear particles -- 3.10.2.10.2 Double conversion -- 3.10.2.11 Advanced concepts -- 3.10.2.11.1 Ferroelectric conversion. , 3.10.2.11.2 Thermomagnetic conversion -- 3.10.2.11.3 On the frontier -- 3.11 Geostrategy of resources and critical infrastructures -- 3.12 Conclusions -- Annex 3.1. Food versus biofuels-an energy balance approach -- Decision support analysis for allocating agricultural area between food and biofuels based on energy conservation -- Introduction -- Advantages -- Disadvantages -- Biofuel (bioethanol) markets in selected nations -- United States -- European Union -- China -- Corn for food or for cars? -- Optimal partition of arable land between food and biofuel crops -- Conclusions -- Annex 3.1.1 -- References -- Further reading -- Four - Big data analysis for climate change proof and risk mitigation -- 4.1 Introduction -- 4.2 Data series -- 4.3 Risk mapping by risk category -- 4.4 Risk assessment frequency/probability measures -- 4.5 Assessing damage -- 4.6 Climate change risk maps -- 4.6.1 Flood risk map -- 4.6.2 Drought risk map -- 4.6.3 Snow risk map -- 4.6.4 Freeze risk -- 4.7 Mapping tool and combined climate change effect risks -- 4.8 Population at risk and economic impacts -- 4.8.1 The way forward, a synthesis for decision-makers -- 4.8.2 Authority of the General Inspectorate for Emergency Situtions -- 4.8.3 Investments -- 4.8.4 Communication -- 4.8.5 Insurance -- 4.9 Setting the basis for a climate change event risk insurance policy -- 4.10 Decisions based on risk -- 4.10.1 Further actions -- 4.11 Hazard risks and their impact on critical infrastructure -- 4.11.1 Case analysis-natural gas networks of Italy and Romania -- 4.11.1.1 Introduction -- 4.11.1.1.1 Quantification of risk -- 4.11.1.1.2 Data preparation -- 4.11.1.1.3 Literature review -- 4.11.1.1.4 Logical model and risk mapping -- 4.12 Conclusions -- Annex 4.1 -- Annex 4.2 -- References -- Further readings -- Five - Brief considerations of economic indicators. , 5.1 From simple to aggregated -- 5.2 Normalization of parameter values -- 5.3 Population migration-A potential cyclic behavior due to saturation -- 5.4 Avoiding or crossing limits-System resilience -- 5.5 Sustainability-Accepting limits -- 5.6 Economy versus environment-Negotiating development -- 5.6.1 Information -- 5.6.2 Time -- 5.6.3 Indicators of sustainability -- 5.6.4 Costs -- 5.7 Conclusions -- 5.7.1 Measuring circular economy-complex indicators -- Annex 5.1 -- The nonlinear GDP dynamics and basins of cyclic behavior -- Introduction -- Data and Fourier analysis -- Eigenvalues and flows -- Determination of differential equations -- Long- and short-term intersectoral cycles -- Finance and agriculture -- Finance and commerce -- Finance and construction -- Finance and services -- Industry and agriculture -- Industry and construction -- Industry and commerce -- Industry and services -- Agriculture and commerce -- Agriculture and construction -- Agriculture and services -- Commerce and construction -- Commerce and services -- Services and construction -- References -- Six - Green investment schemes for sustainability -- 6.1 Case study-green investment scheme of World Bank -- 6.2 Case study: Japan Bank for International Cooperation-proposed green investment scheme financing structure -- 6.3 General green investment scheme for Romania -- Seven - Entropy in economics (bioeconomics, thermoeconomics, econophysics, and others) -- 7.1 Storage, emergy, and transformity -- 7.1.1 Preface to the second edition -- 7.1.2 From content -- 7.1.3 From the back cover -- 7.2 Information and entropy, by Alan McGowan -- 7.3 The entropy concept in biology, by Alan McGowen -- 7.4 Microsoft Encarta encyclopedia: second law of thermodynamics -- 7.4.1 Energy and the forces of production -- 7.4.2 Entropy -- 7.4.3 System defined -- 7.4.4 Thermodynamic estimates. , 7.5 Summary of energy and the US economy.
    Additional Edition: Print version: Purica, Ionut Climate change and circular economics Amsterdam : Elsevier,c2024 ISBN 9780443299698
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edoccha_9961572115502883
    Format: 1 online resource (306 pages)
    Edition: 1st ed.
    ISBN: 9780443299704
    Series Statement: Emerging Technologies and Materials in Thermal Engineering Series
    Note: Front Cover -- Climate Change and Circular Economics -- Climate Change and Circular Economics: Emerging Technologies and Materials in Thermal EngineeringHuman Society as a Closed Th ... -- Copyright -- Dedication -- Contents -- About the author -- Foreword -- Preface -- Acknowledgments and credits -- One - Human society and nature interaction -- 1.1 Society as a dissipative open system -- 1.2 Closing processes in self-organizing cycles -- 1.3 Evolution of human society toward a closed system -- 1.4 Model evolution 3 -- 1.5 Specific results -- 1.5.1 Use of capital -- 1.6 Is an inclusive society possible? -- References -- Further reading -- Two - Irreversible thermodynamics view of the need for a circular economy -- 2.1 Introduction -- 2.2 Irreversible thermodynamics approach -- 2.3 Circular economy -- 2.4 Estimating temperature increases and crises -- 2.5 Turning waste into assets-resource management policy and new technologies -- Appendix 2.1 -- References -- Three - Resource materials and recycling technologies -- 3.1 The main elements of the raw materials initiative -- 3.2 Improving recycling rates -- 3.3 Japan and rare earths in permanent magnets -- 3.4 Managing resources -- 3.4.1 Charting America's import reliance on key minerals -- 3.4.2 US import reliance by mineral -- 3.5 China's gallium and germanium restrictions -- 3.6 Rebirth of nuclear and the needed resources -- 3.7 Technological resources -- 3.7.1 Waste heat recovery system characteristics -- 3.7.1.1 Issues with implementing action -- 3.7.1.2 Climate change impact -- 3.7.1.3 Conditions for emissions mitigation -- 3.7.1.4 Resources -- 3.7.2 End-use energy efficiency and demand side management actions -- 3.7.3 Promoting residential demand-side management programs -- 3.7.3.1 Characteristics -- 3.7.3.2 Issues with implementing action -- 3.7.3.3 Climate change impact. , 3.7.3.4 Conditions for emissions mitigation -- 3.7.3.5 Examples -- 3.7.3.6 Resources -- 3.7.4 Promoting commercial demand-side management programs -- 3.7.4.1 Characteristics -- 3.7.4.2 Issues with implementing action -- 3.7.4.3 Climate change impact -- 3.7.4.4 Conditions for emissions mitigation -- 3.7.4.5 Resources -- 3.7.5 Promoting industrial demand-side management programs -- 3.7.5.1 Characteristics -- 3.7.5.2 Issues with implementing action -- 3.7.5.3 Climate change impact -- 3.7.5.4 Conditions for emissions mitigation -- 3.7.5.5 Resources -- 3.7.6 Renewable energy actions -- 3.7.7 Biomass -- 3.7.7.1 Characteristics -- 3.7.7.2 Issues with implementing action -- 3.7.7.3 Climate change impact -- 3.7.7.4 Conditions for emissions mitigation -- 3.7.8 Geothermal -- 3.7.8.1 Characteeristics -- 3.7.8.2 Issues with implementing action -- 3.7.8.3 Climate change impact -- 3.7.9 Small-scale hydropower -- 3.7.9.1 Characteristics -- 3.7.9.2 Issues with implementing action -- 3.7.9.3 Climate change impact -- 3.7.9.3.1 Emission effect -- Conditions for emissions mitigation -- 3.7.10 Photovoltaics -- 3.7.10.1 Characteristics -- 3.7.10.2 Issues with implementing action -- 3.7.10.3 Climate change impact -- 3.7.10.3.1 Conditions for emissions mitigation -- 3.7.11 Solar thermal -- 3.7.11.1 Characteristics -- 3.7.11.2 Issues with implementing action -- 3.7.11.3 Climate change impact -- 3.7.11.4 Conditions for emissions mitigation -- 3.7.12 Waste-derived fuels -- 3.7.12.1 Characteristics -- 3.7.12.2 Issues with implementing action -- 3.7.13 Wind power -- 3.7.13.1 Characteristics -- 3.7.13.2 Issues with implementing action -- 3.7.13.3 Climate change impact -- 3.7.13.4 Conditions for emissions mitigation -- 3.7.14 Recycling of coal-combustion by-products -- 3.7.14.1 Characteristics -- 3.7.14.2 Climate change impact -- 3.7.14.3 Conditions for emissions mitigation. , 3.7.14.4 Issues with implementing action -- 3.7.15 Utilizing clean coal technology-fluidized bed combustion -- 3.7.15.1 Characteristics -- 3.7.15.2 Climate change impact -- 3.7.15.3 Conditions for emissions mitigation -- 3.7.15.4 Issues with implementing action -- 3.7.16 Utilizing clean coal technology-integrated coal gasification combined cycle systems -- 3.7.16.1 Characteristics -- 3.7.16.2 Climate change impact -- 3.7.16.3 Conditions for emissions mitigation -- 3.7.16.4 Issues with implementing action -- 3.8 Nuclear reactors -- 3.9 Energy storage technologies -- 3.10 Direct conversion of energy -- 3.10.1 Introduction -- 3.10.2 Direct versus dynamic energy conversion -- 3.10.2.1 Dominance of dynamic conversion -- 3.10.2.2 Why is direct conversion desirable? -- 3.10.2.3 Laws governing energy conversion -- 3.10.2.4 Thermoelectricity -- 3.10.2.4.1 Electrons and holes -- 3.10.2.4.2 Practical thermoelectric power generators -- 3.10.2.5 Thermionic conversion -- 3.10.2.5.1 "Boiling" electrons out of metals -- 3.10.2.5.2 Reducing the space charge -- 3.10.2.5.3 Thermionic power in outer space -- 3.10.2.6 Magnetohydrodynamic conversion -- 3.10.2.6.1 Big word, simple concept -- 3.10.2.6.2 The fourth state of matter -- 3.10.2.6.3 Magnetohydrodynamic power prospects -- 3.10.2.7 Chemical batteries -- 3.10.2.7.1 Electricity from the chemical bond -- 3.10.2.7.2 Chemical reactions used in batteries and fuel cells -- 3.10.2.7.3 An old standby in outer space -- 3.10.2.8 The fuel cell -- 3.10.2.8.1 A continuously fueled battery -- Potential fuels -- Scheme for Project Apollo -- 3.10.2.9 Solar cells -- 3.10.2.9.1 Photons as energy carriers -- 3.10.2.9.2 Harnessing the sun's energy -- 3.10.2.10 Nuclear batteries -- 3.10.2.10.1 Energy from nuclear particles -- 3.10.2.10.2 Double conversion -- 3.10.2.11 Advanced concepts -- 3.10.2.11.1 Ferroelectric conversion. , 3.10.2.11.2 Thermomagnetic conversion -- 3.10.2.11.3 On the frontier -- 3.11 Geostrategy of resources and critical infrastructures -- 3.12 Conclusions -- Annex 3.1. Food versus biofuels-an energy balance approach -- Decision support analysis for allocating agricultural area between food and biofuels based on energy conservation -- Introduction -- Advantages -- Disadvantages -- Biofuel (bioethanol) markets in selected nations -- United States -- European Union -- China -- Corn for food or for cars? -- Optimal partition of arable land between food and biofuel crops -- Conclusions -- Annex 3.1.1 -- References -- Further reading -- Four - Big data analysis for climate change proof and risk mitigation -- 4.1 Introduction -- 4.2 Data series -- 4.3 Risk mapping by risk category -- 4.4 Risk assessment frequency/probability measures -- 4.5 Assessing damage -- 4.6 Climate change risk maps -- 4.6.1 Flood risk map -- 4.6.2 Drought risk map -- 4.6.3 Snow risk map -- 4.6.4 Freeze risk -- 4.7 Mapping tool and combined climate change effect risks -- 4.8 Population at risk and economic impacts -- 4.8.1 The way forward, a synthesis for decision-makers -- 4.8.2 Authority of the General Inspectorate for Emergency Situtions -- 4.8.3 Investments -- 4.8.4 Communication -- 4.8.5 Insurance -- 4.9 Setting the basis for a climate change event risk insurance policy -- 4.10 Decisions based on risk -- 4.10.1 Further actions -- 4.11 Hazard risks and their impact on critical infrastructure -- 4.11.1 Case analysis-natural gas networks of Italy and Romania -- 4.11.1.1 Introduction -- 4.11.1.1.1 Quantification of risk -- 4.11.1.1.2 Data preparation -- 4.11.1.1.3 Literature review -- 4.11.1.1.4 Logical model and risk mapping -- 4.12 Conclusions -- Annex 4.1 -- Annex 4.2 -- References -- Further readings -- Five - Brief considerations of economic indicators. , 5.1 From simple to aggregated -- 5.2 Normalization of parameter values -- 5.3 Population migration-A potential cyclic behavior due to saturation -- 5.4 Avoiding or crossing limits-System resilience -- 5.5 Sustainability-Accepting limits -- 5.6 Economy versus environment-Negotiating development -- 5.6.1 Information -- 5.6.2 Time -- 5.6.3 Indicators of sustainability -- 5.6.4 Costs -- 5.7 Conclusions -- 5.7.1 Measuring circular economy-complex indicators -- Annex 5.1 -- The nonlinear GDP dynamics and basins of cyclic behavior -- Introduction -- Data and Fourier analysis -- Eigenvalues and flows -- Determination of differential equations -- Long- and short-term intersectoral cycles -- Finance and agriculture -- Finance and commerce -- Finance and construction -- Finance and services -- Industry and agriculture -- Industry and construction -- Industry and commerce -- Industry and services -- Agriculture and commerce -- Agriculture and construction -- Agriculture and services -- Commerce and construction -- Commerce and services -- Services and construction -- References -- Six - Green investment schemes for sustainability -- 6.1 Case study-green investment scheme of World Bank -- 6.2 Case study: Japan Bank for International Cooperation-proposed green investment scheme financing structure -- 6.3 General green investment scheme for Romania -- Seven - Entropy in economics (bioeconomics, thermoeconomics, econophysics, and others) -- 7.1 Storage, emergy, and transformity -- 7.1.1 Preface to the second edition -- 7.1.2 From content -- 7.1.3 From the back cover -- 7.2 Information and entropy, by Alan McGowan -- 7.3 The entropy concept in biology, by Alan McGowen -- 7.4 Microsoft Encarta encyclopedia: second law of thermodynamics -- 7.4.1 Energy and the forces of production -- 7.4.2 Entropy -- 7.4.3 System defined -- 7.4.4 Thermodynamic estimates. , 7.5 Summary of energy and the US economy.
    Additional Edition: Print version: Purica, Ionut Climate Change and Circular Economics San Diego : Elsevier,c2024 ISBN 9780443299698
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages