Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing :
    UID:
    almahu_9949709279502882
    Umfang: XXXII, 693 p. 107 illus. , online resource.
    Ausgabe: 3rd ed. 2024.
    ISBN: 9783031421440
    Serie: Springer Texts in Statistics,
    Inhalt: This book presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and previous editions had essential updates and comprehensive coverage on critical topics in mathematics. This 3rd edition offers a self-contained description of relevant aspects of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices, in solutions of linear systems and in eigenanalysis. It also includes discussions of the R software package, with numerous examples and exercises. Matrix Algebra considers various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; as well as describing various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors. It covers numerical linear algebra-one of the most important subjects in the field of statistical computing. The content includes greater emphases on R, and extensive coverage of statistical linear models. Matrix Algebra is ideal for graduate and advanced undergraduate students, or as a supplementary text for courses in linear models or multivariate statistics. It's also ideal for use in a course in statistical computing, or as a supplementary text for various courses that emphasize computations.
    Anmerkung: Part I Linear Algebra -- 1 Basic Vector/Matrix Structure and Notation -- 2 Vectors and Vector Spaces -- 3 Basic Properties of Matrices -- 4 Vector/Matrix Derivatives and Integrals -- 5 Matrix Transformations and Factorizations -- 6 Solution of Linear Systems -- 7 Evaluation of Eigenvalues and Eigenvectors.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031421433
    Weitere Ausg.: Printed edition: ISBN 9783031421457
    Weitere Ausg.: Printed edition: ISBN 9783031424168
    Weitere Ausg.: Printed edition: ISBN 9783031516450
    Sprache: Englisch
    Schlagwort(e): Llibres electrònics
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Cham ; Switzerland : Springer
    UID:
    b3kat_BV049657583
    Umfang: XXXII, 693 Seiten
    Ausgabe: Third edition
    ISBN: 9783031421433 , 9783031421440
    Serie: Springer Texts in Statistics
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-031-42144-0
    Sprache: Englisch
    Mehr zum Autor: Gentle, James E. 1943-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing :
    UID:
    edoccha_9961447750402883
    Umfang: 1 online resource (714 pages)
    Ausgabe: 3rd ed. 2024.
    ISBN: 3-031-42144-2
    Serie: Springer Texts in Statistics,
    Inhalt: This book presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and previous editions had essential updates and comprehensive coverage on critical topics in mathematics. This 3rd edition offers a self-contained description of relevant aspects of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices, in solutions of linear systems and in eigenanalysis. It also includes discussions of the R software package, with numerous examples and exercises. Matrix Algebra considers various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; as well as describing various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors. It covers numerical linear algebra—one of the most important subjects in the field of statistical computing. The content includes greater emphases on R, and extensive coverage of statistical linear models. Matrix Algebra is ideal for graduate and advanced undergraduate students, or as a supplementary text for courses in linear models or multivariate statistics. It’s also ideal for use in a course in statistical computing, or as a supplementary text for various courses that emphasize computations.
    Anmerkung: Part I Linear Algebra -- 1 Basic Vector/Matrix Structure and Notation -- 2 Vectors and Vector Spaces -- 3 Basic Properties of Matrices -- 4 Vector/Matrix Derivatives and Integrals -- 5 Matrix Transformations and Factorizations -- 6 Solution of Linear Systems -- 7 Evaluation of Eigenvalues and Eigenvectors.
    Weitere Ausg.: ISBN 3-031-42143-4
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 3031531442?
Meinten Sie 3030420442?
Meinten Sie 3031201442?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz