Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Access
  • 1
    Online Resource
    Online Resource
    Cham :Springer Nature Switzerland :
    UID:
    almafu_9961815726902883
    Format: 1 online resource (822 pages)
    Edition: 5th ed. 2025.
    ISBN: 9783031705847 , 303170584X
    Series Statement: Springer Texts in Statistics,
    Content: This 5th edition of this popular graduate textbook presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. It includes numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The R package ‘astsa’ has had major updates and the text will reflect those updates. In general, the graphics have been improved. New topics include random number generation, modeling and fitting predator-prey interactions, more emphasis on structural models, testing for linearity, discussion of EM algorithm is more extensive, Bayesian analysis of state space models and MCMC is more extensive (including new scripts in astsa), particle methods are introduced, stochastic volatility coverage is expanded, changepoint detection is introduced (new topic). The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example.
    Note: 1. Characteristics of Time Series -- 2. Time Series Regression and Exploratory Data Analysis -- 3. ARIMA Models -- 4. Spectral Analysis and Filtering -- 5. Additional Time Domain Topics -- 6. State-Space Models -- 7. Statistical Methods in the Frequency Domain -- 8. Appendix A: Large Sample Theory -- Appendix B: Time Domain Theory -- Appendix C: Spectral Domain Theory -- Appendix R: R Supplement.
    Additional Edition: ISBN 9783031705830
    Additional Edition: ISBN 3031705831
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    gbv_1916312810
    Format: 1 Online-Ressource (XVII, 599 Seiten)
    Edition: Fifth edition
    ISBN: 9783031705847
    Series Statement: Springer texts in statistics
    Content: This 5th edition of this popular graduate textbook presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. It includes numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The R package ‘astsa’ has had major updates and the text will reflect those updates. In general, the graphics have been improved. New topics include random number generation, modeling and fitting predator-prey interactions, more emphasis on structural models, testing for linearity, discussion of EM algorithm is more extensive, Bayesian analysis of state space models and MCMC is more extensive (including new scripts in astsa), particle methods are introduced, stochastic volatility coverage is expanded, changepoint detection is introduced (new topic). The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example.
    Note: 1. Characteristics of Time Series -- 2. Time Series Regression and Exploratory Data Analysis -- 3. ARIMA Models -- 4. Spectral Analysis and Filtering -- 5. Additional Time Domain Topics -- 6. State-Space Models -- 7. Statistical Methods in the Frequency Domain -- 8. Appendix A: Large Sample Theory -- Appendix B: Time Domain Theory -- Appendix C: Spectral Domain Theory -- Appendix R: R Supplement.
    Additional Edition: ISBN 9783031705830
    Additional Edition: ISBN 9783031705854
    Additional Edition: ISBN 9783031705861
    Additional Edition: Erscheint auch als Druck-Ausgabe Shumway, Robert H. Time series analysis and its applications Cham : Springer, 2025 ISBN 9783031705830
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9949950132402882
    Format: XVII, 599 p. 170 illus., 162 illus. in color. , online resource.
    Edition: 5th ed. 2025.
    ISBN: 9783031705847
    Series Statement: Springer Texts in Statistics,
    Content: This 5th edition of this popular graduate textbook presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. It includes numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The R package 'astsa' has had major updates and the text will reflect those updates. In general, the graphics have been improved. New topics include random number generation, modeling and fitting predator-prey interactions, more emphasis on structural models, testing for linearity, discussion of EM algorithm is more extensive, Bayesian analysis of state space models and MCMC is more extensive (including new scripts in astsa), particle methods are introduced, stochastic volatility coverage is expanded, changepoint detection is introduced (new topic). The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example.
    Note: 1. Characteristics of Time Series -- 2. Time Series Regression and Exploratory Data Analysis -- 3. ARIMA Models -- 4. Spectral Analysis and Filtering -- 5. Additional Time Domain Topics -- 6. State-Space Models -- 7. Statistical Methods in the Frequency Domain -- 8. Appendix A: Large Sample Theory -- Appendix B: Time Domain Theory -- Appendix C: Spectral Domain Theory -- Appendix R: R Supplement.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783031705830
    Additional Edition: Printed edition: ISBN 9783031705854
    Additional Edition: Printed edition: ISBN 9783031705861
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 3031705831?
Did you mean 303174554x?
Did you mean 3031702840?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages