Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    almafu_9961708575402883
    Umfang: 1 online resource (534 pages)
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031705953 , 3031705955
    Serie: Lecture Notes in Networks and Systems, 1126
    Inhalt: This book requires an in-depth exploration of machine learning and its integration into system engineering. This book presents contemporary research methodologies, with a strong focus on the innovative application of machine learning techniques in developing and optimizing systems. It includes the meticulously reviewed proceedings from the Machine Learning Methods in Systems session of the 13th Computer Science Online Conference 2024 (CSOC 2024), held virtually in April 2024.
    Anmerkung: -- 1: Extrapolation of periodic signal with Poisson noise using neural networks. -- 2: Method for Complexing Information From Intelligent Sensors of Mobile Components of Monitoring Systems. -- 3: Using regression models to analyze data. -- 4: Improving Password Generation Algorithm with Parallellism: comparative performance study. -- 5: Assessing the Feasibility of Implementing Information Systems and Management Systems Projects Using Fuzzy Modeling Tools. -- 6: Semi-phenomenological approach to the description of gold nanoclusters. -- 7: “Imaginary boundary” method in studying the optical properties of ordered nanostructures. -- 8: A method for controlling the efficiency of second harmonic generation by controlled change in the refractive index of an external dielectric medium. -- 9: Study of the properties of selectively transparent metasurfaces tunable through external control of the properties of 2D materials, etc.
    Weitere Ausg.: ISBN 9783031705946
    Weitere Ausg.: ISBN 3031705947
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949892333402882
    Umfang: XV, 520 p. 193 illus., 139 illus. in color. , online resource.
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031705953
    Serie: Lecture Notes in Networks and Systems, 1126
    Inhalt: This book requires an in-depth exploration of machine learning and its integration into system engineering. This book presents contemporary research methodologies, with a strong focus on the innovative application of machine learning techniques in developing and optimizing systems. It includes the meticulously reviewed proceedings from the Machine Learning Methods in Systems session of the 13th Computer Science Online Conference 2024 (CSOC 2024), held virtually in April 2024.
    Anmerkung: -- 1: Extrapolation of periodic signal with Poisson noise using neural networks. -- 2: Method for Complexing Information From Intelligent Sensors of Mobile Components of Monitoring Systems. -- 3: Using regression models to analyze data. -- 4: Improving Password Generation Algorithm with Parallellism: comparative performance study. -- 5: Assessing the Feasibility of Implementing Information Systems and Management Systems Projects Using Fuzzy Modeling Tools. -- 6: Semi-phenomenological approach to the description of gold nanoclusters. -- 7: "Imaginary boundary" method in studying the optical properties of ordered nanostructures. -- 8: A method for controlling the efficiency of second harmonic generation by controlled change in the refractive index of an external dielectric medium. -- 9: Study of the properties of selectively transparent metasurfaces tunable through external control of the properties of 2D materials, etc.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031705946
    Weitere Ausg.: Printed edition: ISBN 9783031705960
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 3031706595?
Meinten Sie 3031720555?
Meinten Sie 3031505905?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz