Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Person/Organisation
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer Nature Switzerland :
    Dazugehörige Titel
    UID:
    almafu_9961738675502883
    Umfang: 1 online resource (444 pages)
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031743702 , 3031743709
    Serie: Springer Series in Computational Mathematics, 62
    Inhalt: This book is about the theory of so-called Schwarz methods for solving variational problems in a Hilbert space V arising from linear equations and their associated quadratic minimization problems. Schwarz methods are based on the construction of a sequence of approximate solutions by solving auxiliary variational problems on a set of (smaller, finite-dimensional) Hilbert spaces Vi in a certain order, combining them, and using the combined approximations in an iterative procedure. The spaces Vi form a so-called space splitting for V, they need not necessarily be subspaces of V, and their number can be finite or infinite. The convergence behavior of Schwarz methods is influenced by certain properties of the space splittings they are based on. These properties are identified, and a detailed treatment of traditional deterministic and more recent greedy and stochastic orderings in the subproblem solution process is given, together with an investigation of accelerated methods. To illustrate the abstract theory, the numerical linear algebra analogs of the iterative methods covered in the book are discussed. Its standard application to the convergence theory of multilevel and domain decomposition methods for solving PDE problems is explained, and links to optimization theory and online learning algorithms are given. Providing an introduction and overview of iterative methods which are based on problem decompositions and suitable for parallel and distributed computing, the book could serve as the basis for a one- or two-semester course for M.S. and Ph.D. students specializing in numerical analysis and scientific computing. It will also appeal to a wide range of researchers interested in scientific computing in the broadest sense.
    Anmerkung: 1 Introduction -- 2 Hilbert space splittings: Abstract theory -- References -- 3 Hilbert space splittings: Examples and extensions -- References -- 4 Schwarz iterative methods: Finite Omega -- References -- 5 Special topics and extensions -- References -- 6 Schwarz approximation methods: Infinite Omega -- References -- 7 Applications to PDE solvers -- References -- A Hilbert space basics -- A.1 Spaces: Basic notation, definitions and properties -- A.2 Operators between Hilbert spaces -- A.3 Linear equations and variational problems -- A.4 Constructions on Hilbert spaces -- A.5 Sobolev spaces on domains -- A.6 Reproducing kernel Hilbert spaces (RKHS) -- References -- Index.
    Weitere Ausg.: ISBN 9783031743696
    Weitere Ausg.: ISBN 3031743695
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 3031714695?
Meinten Sie 3031734645?
Meinten Sie 3031741692?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz